Spaces:
Running
Running
Delete raveblender.py
Browse files- raveblender.py +0 -160
raveblender.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image, ImageOps
|
3 |
-
import numpy as np
|
4 |
-
import os
|
5 |
-
import uuid
|
6 |
-
import random
|
7 |
-
from scipy import ndimage
|
8 |
-
|
9 |
-
# Ensure there's a directory for outputs
|
10 |
-
|
11 |
-
os.makedirs("outputs", exist\_ok=True)
|
12 |
-
|
13 |
-
def make\_square(img, size=3000, fill\_color=(0, 0, 0)):
|
14 |
-
x, y = img.size
|
15 |
-
scale = size / max(x, y)
|
16 |
-
new\_size = (int(x \* scale), int(y \* scale))
|
17 |
-
img = img.resize(new\_size, Image.Resampling.LANCZOS)
|
18 |
-
new\_img = Image.new("RGB", (size, size), fill\_color)
|
19 |
-
new\_img.paste(img, ((size - new\_size\[0]) // 2, (size - new\_size\[1]) // 2))
|
20 |
-
return new\_img
|
21 |
-
|
22 |
-
def pixel\_shuffle(img\_array, block\_size=10, shuffle\_strength=0.5):
|
23 |
-
"""Shuffle pixels in blocks to create generative effect"""
|
24 |
-
height, width, channels = img\_array.shape
|
25 |
-
result = np.copy(img\_array)
|
26 |
-
|
27 |
-
```
|
28 |
-
# Create blocks for shuffling
|
29 |
-
h_blocks = height // block_size
|
30 |
-
w_blocks = width // block_size
|
31 |
-
|
32 |
-
# Create list of block coordinates
|
33 |
-
blocks = []
|
34 |
-
for i in range(h_blocks):
|
35 |
-
for j in range(w_blocks):
|
36 |
-
blocks.append((i, j))
|
37 |
-
|
38 |
-
# Shuffle a percentage of blocks based on strength
|
39 |
-
num_blocks_to_shuffle = int(len(blocks) * shuffle_strength)
|
40 |
-
blocks_to_shuffle = random.sample(blocks, num_blocks_to_shuffle)
|
41 |
-
|
42 |
-
# Create a shuffled version of these blocks
|
43 |
-
target_positions = blocks_to_shuffle.copy()
|
44 |
-
random.shuffle(target_positions)
|
45 |
-
|
46 |
-
# Perform the shuffling
|
47 |
-
for (src_i, src_j), (tgt_i, tgt_j) in zip(blocks_to_shuffle, target_positions):
|
48 |
-
src_y, src_x = src_i * block_size, src_j * block_size
|
49 |
-
tgt_y, tgt_x = tgt_i * block_size, tgt_j * block_size
|
50 |
-
|
51 |
-
# Swap blocks
|
52 |
-
temp = np.copy(result[src_y:src_y+block_size, src_x:src_x+block_size])
|
53 |
-
result[src_y:src_y+block_size, src_x:src_x+block_size] = result[tgt_y:tgt_y+block_size, tgt_x:tgt_x+block_size]
|
54 |
-
result[tgt_y:tgt_y+block_size, tgt_x:tgt_x+block_size] = temp
|
55 |
-
|
56 |
-
return result
|
57 |
-
```
|
58 |
-
|
59 |
-
def flow\_distortion(img\_array, strength=10):
|
60 |
-
"""Apply flow-based distortion to simulate generative models"""
|
61 |
-
height, width, channels = img\_array.shape
|
62 |
-
result = np.zeros\_like(img\_array, dtype=np.float32)
|
63 |
-
|
64 |
-
```
|
65 |
-
# Create random flow fields for x and y directions
|
66 |
-
flow_x = np.random.normal(0, strength, (height, width))
|
67 |
-
flow_y = np.random.normal(0, strength, (height, width))
|
68 |
-
|
69 |
-
# Smooth the flow fields
|
70 |
-
flow_x = ndimage.gaussian_filter(flow_x, sigma=30)
|
71 |
-
flow_y = ndimage.gaussian_filter(flow_y, sigma=30)
|
72 |
-
|
73 |
-
# Create meshgrid for coordinate mapping
|
74 |
-
y_coords, x_coords = np.meshgrid(np.arange(height), np.arange(width), indexing='ij')
|
75 |
-
|
76 |
-
# Add flow to coordinates
|
77 |
-
x_mapped = x_coords + flow_x
|
78 |
-
y_mapped = y_coords + flow_y
|
79 |
-
|
80 |
-
# Clip to ensure we stay within bounds
|
81 |
-
x_mapped = np.clip(x_mapped, 0, width-1)
|
82 |
-
y_mapped = np.clip(y_mapped, 0, height-1)
|
83 |
-
|
84 |
-
# Sample from the original image using the warped coordinates
|
85 |
-
for c in range(channels):
|
86 |
-
result[:, :, c] = ndimage.map_coordinates(img_array[:, :, c], [y_mapped, x_mapped], order=1)
|
87 |
-
|
88 |
-
return result
|
89 |
-
```
|
90 |
-
|
91 |
-
def blend\_images\_with\_rearrangement(images, block\_size=20, shuffle\_strength=0.3, flow\_strength=5):
|
92 |
-
if len(images) < 2:
|
93 |
-
return "Upload at least two images.", None
|
94 |
-
|
95 |
-
```
|
96 |
-
try:
|
97 |
-
# Process images
|
98 |
-
processed = []
|
99 |
-
for img in images:
|
100 |
-
try:
|
101 |
-
processed.append(make_square(Image.open(img)))
|
102 |
-
except Exception as e:
|
103 |
-
return f"Error processing image: {str(e)}", None
|
104 |
-
|
105 |
-
# Convert images to numpy arrays
|
106 |
-
img_arrays = [np.array(img).astype(np.float32) for img in processed]
|
107 |
-
|
108 |
-
# Create a base canvas
|
109 |
-
base = np.zeros_like(img_arrays[0])
|
110 |
-
|
111 |
-
# Divide the images into a grid and randomly select pixels from different images
|
112 |
-
height, width, _ = base.shape
|
113 |
-
for i in range(0, height, block_size):
|
114 |
-
for j in range(0, width, block_size):
|
115 |
-
# Get end coordinates for the block
|
116 |
-
end_i = min(i + block_size, height)
|
117 |
-
end_j = min(j + block_size, width)
|
118 |
-
|
119 |
-
# Randomly select which image to pull this block from
|
120 |
-
source_img = random.choice(img_arrays)
|
121 |
-
base[i:end_i, j:end_j] = source_img[i:end_i, j:end_j]
|
122 |
-
|
123 |
-
# Apply pixel shuffling to the composite image
|
124 |
-
base = pixel_shuffle(base, block_size, shuffle_strength)
|
125 |
-
|
126 |
-
# Apply flow distortion to further randomize
|
127 |
-
base = flow_distortion(base, flow_strength)
|
128 |
-
|
129 |
-
# Blend with original images to preserve some coherence
|
130 |
-
for img_array in img_arrays:
|
131 |
-
base = base * 0.7 + img_array * 0.3 / len(img_arrays)
|
132 |
-
|
133 |
-
final = Image.fromarray(np.uint8(np.clip(base, 0, 255)))
|
134 |
-
|
135 |
-
# Save to file
|
136 |
-
output_path = f"outputs/amalgam_{uuid.uuid4().hex[:8]}.png"
|
137 |
-
final.save(output_path)
|
138 |
-
|
139 |
-
return final, output_path
|
140 |
-
except Exception as e:
|
141 |
-
return f"Error during blending: {str(e)}", None
|
142 |
-
```
|
143 |
-
|
144 |
-
demo = gr.Interface(
|
145 |
-
fn=blend\_images\_with\_rearrangement,
|
146 |
-
inputs=\[
|
147 |
-
gr.File(file\_types=\["image"], file\_count="multiple", label="Upload 2–5 stills"),
|
148 |
-
gr.Slider(minimum=5, maximum=100, value=20, step=5, label="Block Size (pixels)"),
|
149 |
-
gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, label="Shuffle Strength"),
|
150 |
-
gr.Slider(minimum=0, maximum=20, value=5, step=1, label="Flow Distortion")
|
151 |
-
],
|
152 |
-
outputs=\[
|
153 |
-
gr.Image(label="Generated Image"),
|
154 |
-
gr.File(label="Download Image")
|
155 |
-
],
|
156 |
-
title="Amalgamator",
|
157 |
-
description="Upload up to 5 stills. Outputs a 3000x3000 image with pixel rearrangement to create a truly generative look."
|
158 |
-
)
|
159 |
-
|
160 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|