import os import cv2 import numpy as np import tensorflow as tf import gradio as gr import requests import time import re import torch from ultralytics import YOLO from transformers import AutoImageProcessor, AutoModelForObjectDetection # ================= Load Models ================= # Violence detection model violence_model = tf.keras.models.load_model("modelnew.h5") if os.path.exists("modelnew.h5") else None # Hugging Face DETR Weapon Detection weapon_model_id = "KIRANKALLA/WeaponDetection" weapon_processor = AutoImageProcessor.from_pretrained(weapon_model_id) weapon_model = AutoModelForObjectDetection.from_pretrained(weapon_model_id) id2label = weapon_model.config.id2label # YOLOv8 Person model person_yolo = YOLO("yolov8n.pt") if os.path.exists("yolov8n.pt") else None # ================= Detection Functions ================= def draw_label(frame, text, x, y, color): cv2.rectangle(frame, (x, y-25), (x+len(text)*12, y), color, -1) cv2.putText(frame, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2) def detect_violence(frame): if violence_model is None: return frame, "Violence model missing!" resized = cv2.resize(frame, (128, 128)) / 255.0 prediction = violence_model.predict(np.expand_dims(resized, axis=0), verbose=0)[0][0] violence = prediction > 0.5 color = (0, 0, 255) if violence else (0, 255, 0) draw_label(frame, f"Violence: {prediction:.2f}", 10, 30, color) return frame, ("⚠ ALERT: Violence Detected!" if violence else "No Violence Detected") def detect_weapon(frame): # Convert BGR to RGB image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) inputs = weapon_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = weapon_model(**inputs) # Post-process detections target_sizes = torch.tensor([image.shape[:2]]) results = weapon_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.5)[0] alert = "No Weapon Detected" for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [int(i) for i in box.tolist()] x1, y1, x2, y2 = box cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3) label_text = f"{id2label[label.item()]}: {score:.2f}" draw_label(frame, label_text, x1, y1, (0,0,255)) alert = "⚠ ALERT: Weapon Detected!" return frame, alert def detect_person(frame): if person_yolo is None: return frame, "YOLOv8 model missing!" results = person_yolo(frame, stream=True) count = 0 for r in results: for box in r.boxes: cls = int(box.cls[0]) conf = float(box.conf[0]) if cls == 0 and conf > 0.5: count += 1 x1, y1, x2, y2 = map(int, box.xyxy[0]) cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,0), 3) draw_label(frame, "Person", x1, y1, (0,255,0)) draw_label(frame, f"Count: {count}", 10, 30, (255,255,0)) return frame, f"Total Persons: {count}" def track_person(frame): if person_yolo is None: return frame, "YOLOv8 model missing!" results = person_yolo.track(frame, persist=True) if results and len(results) > 0: boxes = results[0].boxes ids = results[0].boxes.id for i, box in enumerate(boxes): x1, y1, x2, y2 = map(int, box.xyxy[0]) label = f"ID {int(ids[i])}" if ids is not None else "Person" cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,255), 3) draw_label(frame, label, x1, y1, (0,255,255)) return frame, "Tracking Active" def parse_person_count(person_text): try: m = re.search(r'(\d+)', person_text) return int(m.group(1)) if m else 0 except: return 0 # ================= Live Inference ================= current_mode = {"mode": "Violence Detection"} def set_mode(new_mode): current_mode["mode"] = new_mode return f"Mode switched to {new_mode}" def live_inference(video_frame): frame = cv2.cvtColor(video_frame, cv2.COLOR_RGB2BGR) # primary detection depending on mode if current_mode["mode"] == "Violence Detection": frame, alert = detect_violence(frame) elif current_mode["mode"] == "Weapon Detection": frame, alert = detect_weapon(frame) elif current_mode["mode"] == "Person Counting": frame, alert = detect_person(frame) elif current_mode["mode"] == "Person Tracking": frame, alert = track_person(frame) else: alert = "Invalid Mode" # Always try to get a person count person_count = 0 tracked_ids_str = "N/A" if person_yolo is not None: try: tmp = frame.copy() _, person_text = detect_person(tmp) person_count = parse_person_count(person_text) except Exception: person_count = 0 # Build the auto-report text timestamp = time.strftime("%Y-%m-%d %H:%M:%S") violence_status = "Yes" if "⚠ ALERT: Violence" in alert else "No" weapon_status = "Yes" if "⚠ ALERT: Weapon" in alert else "No" report = f"[{timestamp}] Violence detected: {violence_status} | Weapon detected: {weapon_status} | Persons at location: {person_count} | Tracked IDs: {tracked_ids_str}" # Convert output image back to RGB for Gradio out_img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) return out_img, alert, report # ================= Gradio UI ================= with gr.Blocks(css=""" #alert-box {font-size:24px;font-weight:bold;text-align:center;} #report-box {font-family:monospace; white-space:pre-wrap; height:140px; overflow:auto;} .blink {animation: blink 1s infinite;} @keyframes blink {0%{background:red;color:white;}50%{background:white;color:red;}100%{background:red;color:white;}} """) as demo: gr.Markdown("# 🚨 Live AI Surveillance Dashboard") with gr.Row(): violence_btn = gr.Button("Violence Detection") weapon_btn = gr.Button("Weapon Detection") count_btn = gr.Button("Person Counting") track_btn = gr.Button("Person Tracking") with gr.Row(): webcam_input = gr.Image(sources=["webcam"], streaming=True, type="numpy", label="Live Webcam", height=720) output_image = gr.Image(label="Output", height=720) alert_box = gr.Textbox(label="Alert", elem_id="alert-box", interactive=False) report_box = gr.Textbox(label="Auto-Generated Report", elem_id="report-box", interactive=False) # Button events violence_btn.click(lambda: set_mode("Violence Detection"), outputs=alert_box) weapon_btn.click(lambda: set_mode("Weapon Detection"), outputs=alert_box) count_btn.click(lambda: set_mode("Person Counting"), outputs=alert_box) track_btn.click(lambda: set_mode("Person Tracking"), outputs=alert_box) # Live stream webcam_input.stream( live_inference, inputs=[webcam_input], outputs=[output_image, alert_box, report_box] ) demo.launch(server_name="0.0.0.0", server_port=7860, share=True)