File size: 7,057 Bytes
5184134
79a5f18
 
5184134
 
 
 
 
 
 
79a5f18
 
5184134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5f18
5184134
 
 
 
 
 
 
 
 
 
 
 
 
79a5f18
 
5184134
79a5f18
 
5184134
79a5f18
5184134
79a5f18
5184134
79a5f18
5184134
79a5f18
 
 
5184134
79a5f18
5184134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5f18
5184134
 
 
79a5f18
5184134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5f18
 
5184134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a5f18
5184134
 
 
 
 
 
79a5f18
5184134
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import cv2
import numpy as np
import tensorflow as tf
import gradio as gr
import requests
import time
import re
import torch
from ultralytics import YOLO
from transformers import AutoImageProcessor, AutoModelForObjectDetection

# ================= Load Models =================
# Violence detection model
violence_model = tf.keras.models.load_model("modelnew.h5") if os.path.exists("modelnew.h5") else None

# Hugging Face DETR Weapon Detection
weapon_model_id = "KIRANKALLA/WeaponDetection"
weapon_processor = AutoImageProcessor.from_pretrained(weapon_model_id)
weapon_model = AutoModelForObjectDetection.from_pretrained(weapon_model_id)
id2label = weapon_model.config.id2label

# YOLOv8 Person model
person_yolo = YOLO("yolov8n.pt") if os.path.exists("yolov8n.pt") else None

# ================= Detection Functions =================
def draw_label(frame, text, x, y, color):
    cv2.rectangle(frame, (x, y-25), (x+len(text)*12, y), color, -1)
    cv2.putText(frame, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)

def detect_violence(frame):
    if violence_model is None:
        return frame, "Violence model missing!"

    resized = cv2.resize(frame, (128, 128)) / 255.0
    prediction = violence_model.predict(np.expand_dims(resized, axis=0), verbose=0)[0][0]
    violence = prediction > 0.5

    color = (0, 0, 255) if violence else (0, 255, 0)
    draw_label(frame, f"Violence: {prediction:.2f}", 10, 30, color)
    return frame, ("⚠ ALERT: Violence Detected!" if violence else "No Violence Detected")

def detect_weapon(frame):
    # Convert BGR to RGB
    image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    inputs = weapon_processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = weapon_model(**inputs)

    # Post-process detections
    target_sizes = torch.tensor([image.shape[:2]])
    results = weapon_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.5)[0]

    alert = "No Weapon Detected"
    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [int(i) for i in box.tolist()]
        x1, y1, x2, y2 = box
        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
        label_text = f"{id2label[label.item()]}: {score:.2f}"
        draw_label(frame, label_text, x1, y1, (0,0,255))
        alert = "⚠ ALERT: Weapon Detected!"

    return frame, alert

def detect_person(frame):
    if person_yolo is None:
        return frame, "YOLOv8 model missing!"

    results = person_yolo(frame, stream=True)
    count = 0
    for r in results:
        for box in r.boxes:
            cls = int(box.cls[0])
            conf = float(box.conf[0])
            if cls == 0 and conf > 0.5:
                count += 1
                x1, y1, x2, y2 = map(int, box.xyxy[0])
                cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,0), 3)
                draw_label(frame, "Person", x1, y1, (0,255,0))
    draw_label(frame, f"Count: {count}", 10, 30, (255,255,0))
    return frame, f"Total Persons: {count}"

def track_person(frame):
    if person_yolo is None:
        return frame, "YOLOv8 model missing!"

    results = person_yolo.track(frame, persist=True)
    if results and len(results) > 0:
        boxes = results[0].boxes
        ids = results[0].boxes.id
        for i, box in enumerate(boxes):
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            label = f"ID {int(ids[i])}" if ids is not None else "Person"
            cv2.rectangle(frame, (x1,y1), (x2,y2), (0,255,255), 3)
            draw_label(frame, label, x1, y1, (0,255,255))
    return frame, "Tracking Active"

def parse_person_count(person_text):
    try:
        m = re.search(r'(\d+)', person_text)
        return int(m.group(1)) if m else 0
    except:
        return 0

# ================= Live Inference =================
current_mode = {"mode": "Violence Detection"}

def set_mode(new_mode):
    current_mode["mode"] = new_mode
    return f"Mode switched to {new_mode}"

def live_inference(video_frame):
    frame = cv2.cvtColor(video_frame, cv2.COLOR_RGB2BGR)

    # primary detection depending on mode
    if current_mode["mode"] == "Violence Detection":
        frame, alert = detect_violence(frame)
    elif current_mode["mode"] == "Weapon Detection":
        frame, alert = detect_weapon(frame)
    elif current_mode["mode"] == "Person Counting":
        frame, alert = detect_person(frame)
    elif current_mode["mode"] == "Person Tracking":
        frame, alert = track_person(frame)
    else:
        alert = "Invalid Mode"

    # Always try to get a person count
    person_count = 0
    tracked_ids_str = "N/A"
    if person_yolo is not None:
        try:
            tmp = frame.copy()
            _, person_text = detect_person(tmp)
            person_count = parse_person_count(person_text)
        except Exception:
            person_count = 0

    # Build the auto-report text
    timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
    violence_status = "Yes" if "⚠ ALERT: Violence" in alert else "No"
    weapon_status = "Yes" if "⚠ ALERT: Weapon" in alert else "No"
    report = f"[{timestamp}] Violence detected: {violence_status} | Weapon detected: {weapon_status} | Persons at location: {person_count} | Tracked IDs: {tracked_ids_str}"

    # Convert output image back to RGB for Gradio
    out_img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    return out_img, alert, report

# ================= Gradio UI =================
with gr.Blocks(css="""
#alert-box {font-size:24px;font-weight:bold;text-align:center;}
#report-box {font-family:monospace; white-space:pre-wrap; height:140px; overflow:auto;}
.blink {animation: blink 1s infinite;}
@keyframes blink {0%{background:red;color:white;}50%{background:white;color:red;}100%{background:red;color:white;}}
""") as demo:
    gr.Markdown("# 🚨 Live AI Surveillance Dashboard")

    with gr.Row():
        violence_btn = gr.Button("Violence Detection")
        weapon_btn = gr.Button("Weapon Detection")
        count_btn = gr.Button("Person Counting")
        track_btn = gr.Button("Person Tracking")

    with gr.Row():
        webcam_input = gr.Image(sources=["webcam"], streaming=True, type="numpy", label="Live Webcam", height=720)
        output_image = gr.Image(label="Output", height=720)

    alert_box = gr.Textbox(label="Alert", elem_id="alert-box", interactive=False)
    report_box = gr.Textbox(label="Auto-Generated Report", elem_id="report-box", interactive=False)

    # Button events
    violence_btn.click(lambda: set_mode("Violence Detection"), outputs=alert_box)
    weapon_btn.click(lambda: set_mode("Weapon Detection"), outputs=alert_box)
    count_btn.click(lambda: set_mode("Person Counting"), outputs=alert_box)
    track_btn.click(lambda: set_mode("Person Tracking"), outputs=alert_box)

    # Live stream
    webcam_input.stream(
        live_inference,
        inputs=[webcam_input],
        outputs=[output_image, alert_box, report_box]
    )

demo.launch(server_name="0.0.0.0", server_port=7860, share=True)