import openpyxl from typing import Dict, List from translate.translator import translate_text_dict import math import chardet import io import pandas as pd import pymongo import gridfs import tempfile import os def translate_xlsx(file_id: str, sheet_name: str = None, from_lang: str = 'en', target_lang: str = "fr", gemini_api: str = "", db_name: str = "excel"): # Kết nối MongoDB client = pymongo.MongoClient("mongodb+srv://admin:1highbar456@cluster0.equkm.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0") db = client[db_name] fs_input = gridfs.GridFS(db, collection="root_file") fs_output = gridfs.GridFS(db, collection="final_file") # Tải file từ MongoDB file_data = fs_input.get(file_id).read() # Lưu file tạm thời with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file: temp_file.write(file_data) temp_file_path = temp_file.name # Đọc file Excel bằng openpyxl wb = openpyxl.load_workbook(temp_file_path) # Chọn sheet được chỉ định hoặc tất cả các sheet sheets = [wb[sheet_name]] if sheet_name else wb.worksheets for ws in sheets: max_row = ws.max_row max_col = ws.max_column # Tạo dictionary lưu trữ nội dung cần dịch và mapping từ key đến cell text_dict: Dict[str, List[str]] = {} cell_map: Dict[str, any] = {} # lưu mapping key -> cell object for row in range(1, max_row + 1): for col in range(1, max_col + 1): cell = ws.cell(row=row, column=col) if isinstance(cell.value, str): key = f"R{row}C{col}" # key theo dạng R{row}C{col} text_dict[key] = [cell.value] # Lưu giá trị dưới dạng danh sách với 1 phần tử cell_map[key] = cell # Gọi hàm dịch theo dạng bulk translated_dict = translate_text_dict(text_dict, target_lang=target_lang, gemini_api=gemini_api) # Cập nhật lại các cell với nội dung đã dịch for key, cell in cell_map.items(): if key in translated_dict: translated_text_list = translated_dict[key] if translated_text_list and len(translated_text_list) > 0: cell.value = translated_text_list[0] # Lưu workbook vào file tạm thời with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as output_file: wb.save(output_file.name) output_file.seek(0) translated_file_id = fs_output.put(output_file.read(), filename=f"translated_{file_id}.xlsx") # Đóng workbook và xóa file tạm wb.close() os.remove(temp_file_path) print(f"✅ Dịch thành công! File đã lưu vào MongoDB với file_id: {translated_file_id}") return translated_file_id def read_csv_with_auto_encoding(csv_path): # Đọc file dưới dạng nhị phân with open(csv_path, "rb") as f: raw_data = f.read() # Dò tìm encoding detect_result = chardet.detect(raw_data) encoding = detect_result["encoding"] confidence = detect_result["confidence"] print(f"Chardet dự đoán file '{csv_path}' có encoding = {encoding} (độ tin cậy = {confidence})") # Nếu chardet không phát hiện được, ta đặt fallback = 'utf-8' if encoding is None: encoding = "utf-8" decoded_data = raw_data.decode(encoding, errors='replace') # Sử dụng io.StringIO để chuyển đổi chuỗi thành đối tượng file-like csv_data = io.StringIO(decoded_data) df = pd.read_csv(csv_data) return df def translate_csv(file_id, source_lang="en", target_lang="vi", gemini_api="", chunk_size=50, text_columns=None, db_name="csv"): # Kết nối MongoDB client = pymongo.MongoClient("mongodb+srv://admin:1highbar456@cluster0.equkm.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0") db = client[db_name] fs_input = gridfs.GridFS(db, collection="root_file") fs_output = gridfs.GridFS(db, collection="final_file") # Tải file từ MongoDB file_data = fs_input.get(file_id).read() # Lưu file tạm thời with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as temp_file: temp_file.write(file_data) temp_file_path = temp_file.name df = read_csv_with_auto_encoding(temp_file_path) # If text_columns is not specified, we assume we want to translate everything that looks like text. # Otherwise, only translate the given columns. if text_columns is None: # Example heuristic: choose all object/string columns text_columns = df.select_dtypes(include=["object"]).columns.tolist() num_rows = len(df) num_chunks = math.ceil(num_rows / chunk_size) translated_df = df.copy() # copy to store the final translations for chunk_index in range(num_chunks): start_idx = chunk_index * chunk_size end_idx = min((chunk_index + 1) * chunk_size, num_rows) chunk_df = df.iloc[start_idx:end_idx] # Build a dictionary structure. For example, row-based: # { # "0": {"colA": "some text", "colB": "some text"}, # "1": {"colA": "some text", "colB": "some text"}, # ... # } chunk_dict = {} for i, row in chunk_df.iterrows(): row_dict = {} for col in text_columns: row_dict[col] = str(row[col]) if pd.notnull(row[col]) else "" chunk_dict[str(i)] = row_dict # Now call your LLM translator on this dictionary translated_chunk = translate_text_dict( text_dict=chunk_dict, source_lang=source_lang, target_lang=target_lang, gemini_api=gemini_api ) # 'translated_chunk' should be the same structure, so let's re-inject into the DataFrame for i_str, row_data in translated_chunk.items(): i = int(i_str) for col, translated_val in row_data.items(): translated_df.at[i, col] = translated_val # Lưu file dịch vào tệp tạm thời translated_file_path = temp_file_path.replace(".csv", f"_translated_{target_lang}.csv") translated_df.to_csv(translated_file_path, index=False, encoding='utf-8-sig') # Đọc lại file tạm để lưu vào MongoDB with open(translated_file_path, "rb") as f: translated_file_id = fs_output.put(f, filename=f"translated_{file_id}.csv") # Xóa file tạm os.remove(temp_file_path) os.remove(translated_file_path) print(f"Translation complete! Saved to MongoDB with file_id: {translated_file_id}") return translated_file_id