Spaces:
Running
Running
File size: 16,731 Bytes
bdcb5e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import os
import docx
from docx import Document
import google.generativeai as genai
import ast
import json
import re
import time
genai.configure(api_key="AIzaSyC5-TFxp9AinBx2_HsIL9SMA4CykkLVG8w")
time_spent_sleeping = 0
mismatches = 0
def batch_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
""" Translates multiple text segments in a single API call. """
if not texts:
return texts # Skip if empty
system_prompt = """
Translate the contents of a JSON file from the specified source language to the specified target language while preserving the structure, spaces, and context of the original text.
Instructions:
1. You will be given three inputs: source language, target language, and a JSON file.
2. The JSON file contains a Python dictionary where each key is an integer, and each value is a string.
3. Ensure one-to-one correspondence—each input item must correspond to exactly one output item with the same number of items.
4. The names of people, places, and organizations should be preserved in the translation.
5. Preserve spaces before or after strings. Do not remove, merge, split, or omit any strings.
6. Translate paragraphs and ensure the translation makes sense when text is put together.
7. Translate split words so that the word is not split in the translation.
8. Return a JSON object that is a Python dictionary containing as many items as the original JSON file, with keys and order preserved.
9. The output must be a syntactically correct Python dictionary.
Additional Examples:
**Input 1**:
- Source language: English
- Target language: Vietnamese
- JSON file:
```json
{"0": "My name is ", "1": "Huy", "2": ".", "3": " Today is ", "4": "a ", "5": "good day", "6": ".", "7": ""}
```
**Output 1**:
```json
{"0": "Tên tôi là ", "1": "Huy", "2": ".", "3": " Hôm nay là ", "4": "một ", "5": "ngày đẹp", "6": ".", "7": ""}
```
**Input 2**:
- Source language: English
- Target language: Spanish
- JSON file:
```json
{"0": "The sky is ", "1": "blue", "2": ".", "3": " Water is ", "4": "essential", "5": " for ", "6": "life", "7": "."}
```
**Output 2**:
```json
{"0": "El cielo es ", "1": "azul", "2": ".", "3": " El agua es ", "4": "esencial", "5": " para ", "6": "la vida", "7": "."}
```
**Input 3**:
- Source language: English
- Target language: French
- JSON file:
```json
{"0": "The quick brown ", "1": "fox ", "2": "jumps ", "3": "over ", "4": "the ", "5": "lazy ", "6": "dog", "7": "."}
```
**Output 3**:
```json
{"0": "Le renard brun ", "1": "rapide ", "2": "saute ", "3": "par-dessus ", "4": "le ", "5": "chien ", "6": "paresseux", "7": "."}
```
Perform the translation and return the result as specified above. Do not include any additional text other than the translated JSON object.
"""
json_data = json.dumps({i: t for i, t in enumerate(texts)})
user_prompt = f"Source language: {source_lang}. Target language: {target_lang}. JSON file: {json_data}"
model = genai.GenerativeModel('gemini-2.0-flash')
response = model.generate_content(contents = system_prompt.strip() + "\n" + user_prompt.strip(), generation_config={
'temperature': 1, # Adjust temperature for desired creativity
'top_p': 1,
'top_k': 1,})
# response_dict = ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\""))
# print(len(texts), len(list(response_dict.values())))
# return list(response_dict.values())
return response
def response_to_dict(response):
return list(ast.literal_eval(response.text.strip().strip("json```").strip("```").strip().strip("\"")).values())
def fix_translate(texts, translated_text):
""" Translates multiple text segments in a single API call. """
if not texts:
return texts # Skip if empty
system_prompt = """
You are given the original JSON dictionary and the translated response text. Your task is to ensure that the translated text is in the correct format and has the same number of items as the original JSON dictionary.
Steps to follow:
1. Parse the original and translated JSON dictionaries.
2. Ensure that the keys in both dictionaries are strings (i.e., "1" instead of 1).
3. Compare the number of items in both dictionaries.
4. If the number of items in the translated dictionary is not equal to the number of items in the original dictionary, adjust the translated dictionary by:
a. Adding missing items with empty strings if there are fewer items.
b. Merging or splitting items to ensure correspondence with the original items if there are more items.
5. Ensure that each item in the translated dictionary is in the correct order, with the same key as the original item.
6. Preserve any leading or trailing spaces in the original strings.
7. Ensure the output is a syntactically correct Python dictionary, with proper opening and closing braces.
8. If the translated dictionary is already correct, return it as is.
9. Return the corrected JSON dictionary in proper Python dictionary format.
Example Inputs and Outputs:
**Input:**
- Original JSON dictionary:
```json
{"0": "My name is ", "1": "Huy", "2": ".", "3": " Today is ", "4": "a ", "5": "good day", "6": ".", "7": ""}
```
- Translated response text with fewer items:
```json
{"0": "Tên tôi là ", "1": "Huy", "2": ".", "3": "Hôm nay ", "4": "là một ", "5": "ngày đẹp", "6": "."}
```
**Output:**
```json
{"0": "Tên tôi là ", "1": "Huy", "2": ".", "3": "Hôm nay ", "4": "là một ", "5": "ngày đẹp", "6": ".", "7": ""}
```
**Input:**
- Original JSON dictionary:
```json
{"0": "The sky is ", "1": "blue", "2": ".", "3": " Water is ", "4": "essential", "5": " for ", "6": "life", "7": "."}
```
- Translated response text with more items:
```json
{"0": "El cielo es ", "1": "azul", "2": ".", "3": " El agua es ", "4": "esencial", "5": " para ", "6": "la", "7": " vida", "8": "."}
```
**Output:**
```json
{"0": "El cielo es ", "1": "azul", "2": ".", "3": " El agua es ", "4": "esencial", "5": " para ", "6": "la vida", "7": "."}
```
**Input:**
- Original JSON dictionary:
```json
{"0": "The quick brown ", "1": "fox ", "2": "jumps ", "3": "over ", "4": "the ", "5": "lazy ", "6": "dog", "7": "."}
```
- Translated response text with issues:
```json
{"0": "Le renard ", "1": "brun ", 2: "rapide ", 3: "saute ", 4: "par-dessus ", "5": "le ", "6": "chien ", "7": "paresseux", 8: "."}
```
**Output:**
```json
{"0": "Le renard brun ", "1": "rapide ", "2": "saute ", "3": "par-dessus ", "4": "le ", "5": "chien ", "6": "paresseux", "7": "."}
```
**Input:**
- Original JSON dictionary:
```json
{"0": "The quick brown ", "1": "fox ", "2": "jumps ", "3": "over ", "4": "the ", "5": "lazy ", "6": "dog."}
```
- Translated response text with wrong formatting:
```json
{"0": "Le renard brun ", "1": "rapide ", "2": "saute ", "3": "par-dessus ", "4": "le ", "5": "chien ", "6": "paresseux".}
```
**Output:**
```json
{"0": "Le renard brun ", "1": "rapide ", "2": "saute ", "3": "par-dessus ", "4": "le ", "5": "chien ", "6": "paresseux."}
```
Perform the corrections and return the result as a properly formatted Python dictionary.
"""
json_data = json.dumps({i: t for i, t in enumerate(texts)})
user_prompt = f"Original JSON dictionary: {json_data}. Translated response text: {translated_text}"
model = genai.GenerativeModel('gemini-2.0-flash')
response = model.generate_content(contents = system_prompt.strip() + "\n" + user_prompt.strip(), generation_config={
'temperature': 1, # Adjust temperature for desired creativity
'top_p': 1,
'top_k': 1,})
return response_to_dict(response)
# return response
def brute_force_fix(batch, translated_batch):
if len(batch) > len(translated_batch):
translated_batch += [""] * (len(batch) - len(translated_batch))
elif len(batch) < len(translated_batch):
translated_batch = translated_batch[:len(batch)]
return translated_batch
def batch_translate_loop(batch, source_lang, target_lang):
if not batch:
return batch
translated_batch_response = batch_translate(batch, source_lang, target_lang)
try:
translated_batch = response_to_dict(translated_batch_response)
assert(len(translated_batch) == len(batch))
except:
for i in range(10):
print(f'I am ChatGPT and I am retarded, retrying translation time {i}:')
try:
translated_batch = fix_translate(batch, translated_batch_response.text.strip().strip("json```").strip("```").strip().strip("\""))
assert(len(translated_batch) == len(batch))
break
except:
pass
try:
translated_batch = response_to_dict(translated_batch_response)
except:
raise ValueError("The translated batch is not a list.")
if len(translated_batch) != len(batch):
print("Length mismatch after translation. Brute Force Fixing...")
translated_batch = brute_force_fix(batch, translated_batch)
global mismatches
mismatches += 1
print(len(batch), len(translated_batch))
return translated_batch
def get_batches(texts, limit = 1000):
batches = []
batch = []
word_count = 0
for string in texts:
if len(string.split()) + word_count >= limit:
batches.append(batch)
batch = []
word_count = 0
batch.append(string)
word_count += len(string)
batches.append(batch)
return batches
def full_translate(texts, source_lang = 'English', target_lang="Vietnamese"):
full_translated_texts = []
batches = get_batches(texts, limit = 1000)
word_count = 0
global time_spent_sleeping
for batch in batches:
translated_batch = batch_translate_loop(batch, source_lang, target_lang)
full_translated_texts += translated_batch
time.sleep(3)
time_spent_sleeping += 3
return full_translated_texts
def merge_runs(runs):
""" Merges adjacent runs with the same style. """
merged_runs = []
for run in runs:
if (merged_runs and isinstance(run, docx.text.run.Run) and isinstance(merged_runs[-1], docx.text.run.Run) and
run.style == merged_runs[-1].style and
merged_runs[-1].bold == run.bold and
merged_runs[-1].italic == run.italic and
merged_runs[-1].underline == run.underline and
merged_runs[-1].font.size == run.font.size and
merged_runs[-1].font.color.rgb == run.font.color.rgb and
merged_runs[-1].font.name == run.font.name):
merged_runs[-1].text += run.text
else:
merged_runs.append(run)
return merged_runs
NS_W = "{http://schemas.openxmlformats.org/wordprocessingml/2006/main}"
def translate_header_footer(doc, source_lang, target_lang):
head_foot = []
for section in doc.sections:
for header in section.header.paragraphs:
for run in header.runs:
head_foot.append(run.text)
for footer in section.footer.paragraphs:
for run in footer.runs:
head_foot.append(run.text)
translated_head_foot = batch_translate_loop(head_foot, source_lang, target_lang)
i = 0
for section in doc.sections:
for header in section.header.paragraphs:
for run in header.runs:
run.text = translated_head_foot[i]
i += 1
for footer in section.footer.paragraphs:
for run in footer.runs:
run.text = translated_head_foot[i]
i += 1
def get_text_elements_para(doc):
para_texts = []
for para in doc.paragraphs:
for element in para._element.iter():
if element.tag.endswith('t'):
if element.text:
emoji_pattern = r'[\U00010000-\U0010FFFF]'
# Split the text but keep emojis as separate elements
parts = re.split(f'({emoji_pattern})', element.text)
for part in parts:
if re.match(emoji_pattern, part):
continue
if len(part.strip()) != 0:
para_texts.append(part)
return para_texts
def get_text_elements_table(doc):
table_texts = []
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
table_texts += get_text_elements_para(cell)
return table_texts
def translate_paragraphs(doc, translated_texts, i = 0):
for para in doc.paragraphs:
for element in para._element.iter():
if element.tag.endswith('t'):
if element.text:
emoji_pattern = r'[\U00010000-\U0010FFFF]'
# Split the text but keep emojis as separate elements
parts = re.split(f'({emoji_pattern})', element.text)
for j in range(len(parts)):
if re.match(emoji_pattern, parts[j]):
continue
if len(parts[j].strip()) != 0:
translated_text = translated_texts[i]
i += 1
parts[j] = translated_text
element.text = "".join(parts)
return doc, i
def translate_tables(doc, translated_texts):
i = 0
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
cell, i = translate_paragraphs(cell, translated_texts, i)
return doc
def is_same_formatting(text1, text2):
"""
Check if two texts have the same formatting.
"""
return (text1.bold == text2.bold \
and text1.italic == text2.italic \
and text1.underline == text2.underline \
and text1.font.size == text2.font.size \
and text1.font.color.rgb == text2.font.color.rgb \
and text1.font.name == text2.font.name)
def merge_elements(doc):
for para in doc.paragraphs:
current_run = []
for element in para.iter_inner_content():
if isinstance(element, docx.text.run.Run):
if current_run == []:
current_run = [element]
elif is_same_formatting(current_run[0], element):
current_run[0].text += element.text
element.text = ""
else:
current_run = [element]
return doc
def translate_docx(input_file, source_lang = "English", target_lang="Vietnamese", output_num = ''):
""" Translates a Word document efficiently using batch processing. """
doc = Document(input_file)
output_file = os.path.join(os.path.dirname(input_file), f"{output_num}{target_lang}_translated_{os.path.basename(input_file)}")
doc = merge_elements(doc)
print('Translating paragraphs.')
para_texts = get_text_elements_para(doc)
translated_para = full_translate(para_texts, source_lang = source_lang, target_lang = target_lang)
print('Done translating pararaphs.')
print('Translating tables.')
table_texts = get_text_elements_table(doc)
translated_tables = full_translate(table_texts, source_lang = source_lang, target_lang = target_lang)
print('Done translating tables.')
print('Inserting paragaphs')
doc, _ = translate_paragraphs(doc, translated_para)
print('Inserting tables.')
doc = translate_tables(doc, translated_tables)
translate_header_footer(doc, source_lang, target_lang)
print('Done translating headers & footers.')
doc.save(output_file)
print(f"Translation complete! Saved as {output_file}") |