Spaces:
Running
Running
File size: 6,880 Bytes
5e554aa 0e9ff78 6ae64ab 0e9ff78 5e554aa 0e9ff78 5e554aa 0e9ff78 5e554aa 0e9ff78 5e554aa 0e9ff78 fad6c52 0e9ff78 5e554aa 0e9ff78 5e554aa 0e9ff78 6ae64ab 0e9ff78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import openpyxl
from typing import Dict, List
from translate.translator import translate_text_dict
import math
import chardet
import io
import pandas as pd
import pymongo
import gridfs
import tempfile
import os
def translate_xlsx(file_id: str, sheet_name: str = None, from_lang: str = 'en', target_lang: str = "fr", gemini_api: str = "", db_name: str = "excel"):
# Kết nối MongoDB
client = pymongo.MongoClient("mongodb+srv://admin:[email protected]/?retryWrites=true&w=majority&appName=Cluster0")
db = client[db_name]
fs_input = gridfs.GridFS(db, collection="root_file")
fs_output = gridfs.GridFS(db, collection="final_file")
# Tải file từ MongoDB
file_data = fs_input.get(file_id).read()
# Lưu file tạm thời
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file:
temp_file.write(file_data)
temp_file_path = temp_file.name
# Đọc file Excel bằng openpyxl
wb = openpyxl.load_workbook(temp_file_path)
# Chọn sheet được chỉ định hoặc tất cả các sheet
sheets = [wb[sheet_name]] if sheet_name else wb.worksheets
for ws in sheets:
max_row = ws.max_row
max_col = ws.max_column
# Tạo dictionary lưu trữ nội dung cần dịch và mapping từ key đến cell
text_dict: Dict[str, List[str]] = {}
cell_map: Dict[str, any] = {} # lưu mapping key -> cell object
for row in range(1, max_row + 1):
for col in range(1, max_col + 1):
cell = ws.cell(row=row, column=col)
if isinstance(cell.value, str):
key = f"R{row}C{col}" # key theo dạng R{row}C{col}
text_dict[key] = [cell.value] # Lưu giá trị dưới dạng danh sách với 1 phần tử
cell_map[key] = cell
# Gọi hàm dịch theo dạng bulk
translated_dict = translate_text_dict(text_dict, target_lang=target_lang, gemini_api=gemini_api)
# Cập nhật lại các cell với nội dung đã dịch
for key, cell in cell_map.items():
if key in translated_dict:
translated_text_list = translated_dict[key]
if translated_text_list and len(translated_text_list) > 0:
cell.value = translated_text_list[0]
# Lưu workbook vào file tạm thời
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as output_file:
wb.save(output_file.name)
output_file.seek(0)
translated_file_id = fs_output.put(output_file.read(), filename=f"translated_{file_id}.xlsx")
# Đóng workbook và xóa file tạm
wb.close()
os.remove(temp_file_path)
print(f"✅ Dịch thành công! File đã lưu vào MongoDB với file_id: {translated_file_id}")
return translated_file_id
def read_csv_with_auto_encoding(csv_path):
# Đọc file dưới dạng nhị phân
with open(csv_path, "rb") as f:
raw_data = f.read()
# Dò tìm encoding
detect_result = chardet.detect(raw_data)
encoding = detect_result["encoding"]
confidence = detect_result["confidence"]
print(f"Chardet dự đoán file '{csv_path}' có encoding = {encoding} (độ tin cậy = {confidence})")
# Nếu chardet không phát hiện được, ta đặt fallback = 'utf-8'
if encoding is None:
encoding = "utf-8"
decoded_data = raw_data.decode(encoding, errors='replace')
# Sử dụng io.StringIO để chuyển đổi chuỗi thành đối tượng file-like
csv_data = io.StringIO(decoded_data)
df = pd.read_csv(csv_data)
return df
def translate_csv(file_id, source_lang="en", target_lang="vi", gemini_api="", chunk_size=50, text_columns=None, db_name="csv"):
# Kết nối MongoDB
client = pymongo.MongoClient("mongodb+srv://admin:[email protected]/?retryWrites=true&w=majority&appName=Cluster0")
db = client[db_name]
fs_input = gridfs.GridFS(db, collection="root_file")
fs_output = gridfs.GridFS(db, collection="final_file")
# Tải file từ MongoDB
file_data = fs_input.get(file_id).read()
# Lưu file tạm thời
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as temp_file:
temp_file.write(file_data)
temp_file_path = temp_file.name
df = read_csv_with_auto_encoding(temp_file_path)
# If text_columns is not specified, we assume we want to translate everything that looks like text.
# Otherwise, only translate the given columns.
if text_columns is None:
# Example heuristic: choose all object/string columns
text_columns = df.select_dtypes(include=["object"]).columns.tolist()
num_rows = len(df)
num_chunks = math.ceil(num_rows / chunk_size)
translated_df = df.copy() # copy to store the final translations
for chunk_index in range(num_chunks):
start_idx = chunk_index * chunk_size
end_idx = min((chunk_index + 1) * chunk_size, num_rows)
chunk_df = df.iloc[start_idx:end_idx]
# Build a dictionary structure. For example, row-based:
# {
# "0": {"colA": "some text", "colB": "some text"},
# "1": {"colA": "some text", "colB": "some text"},
# ...
# }
chunk_dict = {}
for i, row in chunk_df.iterrows():
row_dict = {}
for col in text_columns:
row_dict[col] = str(row[col]) if pd.notnull(row[col]) else ""
chunk_dict[str(i)] = row_dict
# Now call your LLM translator on this dictionary
translated_chunk = translate_text_dict(
text_dict=chunk_dict,
source_lang=source_lang,
target_lang=target_lang,
gemini_api=gemini_api
)
# 'translated_chunk' should be the same structure, so let's re-inject into the DataFrame
for i_str, row_data in translated_chunk.items():
i = int(i_str)
for col, translated_val in row_data.items():
translated_df.at[i, col] = translated_val
# Lưu file dịch vào tệp tạm thời
translated_file_path = temp_file_path.replace(".csv", f"_translated_{target_lang}.csv")
translated_df.to_csv(translated_file_path, index=False, encoding='utf-8-sig')
# Đọc lại file tạm để lưu vào MongoDB
with open(translated_file_path, "rb") as f:
translated_file_id = fs_output.put(f, filename=f"translated_{file_id}.csv")
# Xóa file tạm
os.remove(temp_file_path)
os.remove(translated_file_path)
print(f"Translation complete! Saved to MongoDB with file_id: {translated_file_id}")
return translated_file_id |