minskiter's picture
feat(models): update models and deploy app.py
9f86c43
raw
history blame
692 Bytes
from transformers import BertTokenizer,AutoModel
from transformers.pipelines import pipeline
from register import register
import gradio as gr
from huggingface_hub import login
import os
register()
login(os.environ["HF_Token"])
tokenizer = BertTokenizer.from_pretrained("minskiter/resume_token_classification",use_auth_token=True)
model = AutoModel.from_pretrained("minskiter/resume_token_classification",use_auth_token=True)
ner_predictor = pipeline(
"ner_predictor",
model=model,
tokenizer=tokenizer,
device="cpu"
)
def ner_predictor_gradio(input):
return ner_predictor(input)
demo = gr.Interface(fn=ner_predictor_gradio, inputs="text", outputs="text")
demo.launch()