Spaces:
Runtime error
Runtime error
| """ | |
| This file defines XMem, the highest level nn.Module interface | |
| During training, it is used by trainer.py | |
| During evaluation, it is used by inference_core.py | |
| It further depends on modules.py which gives more detailed implementations of sub-modules | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| from model.aggregate import aggregate | |
| from model.modules import * | |
| from model.memory_util import * | |
| class XMem(nn.Module): | |
| def __init__(self, config, model_path=None, map_location=None): | |
| """ | |
| model_path/map_location are used in evaluation only | |
| map_location is for converting models saved in cuda to cpu | |
| """ | |
| super().__init__() | |
| model_weights = self.init_hyperparameters(config, model_path, map_location) | |
| self.single_object = config.get('single_object', False) | |
| print(f'Single object mode: {self.single_object}') | |
| self.key_encoder = KeyEncoder() | |
| self.value_encoder = ValueEncoder(self.value_dim, self.hidden_dim, self.single_object) | |
| # Projection from f16 feature space to key/value space | |
| self.key_proj = KeyProjection(1024, self.key_dim) | |
| self.decoder = Decoder(self.value_dim, self.hidden_dim) | |
| if model_weights is not None: | |
| self.load_weights(model_weights, init_as_zero_if_needed=True) | |
| def encode_key(self, frame, need_sk=True, need_ek=True): | |
| # Determine input shape | |
| if len(frame.shape) == 5: | |
| # shape is b*t*c*h*w | |
| need_reshape = True | |
| b, t = frame.shape[:2] | |
| # flatten so that we can feed them into a 2D CNN | |
| frame = frame.flatten(start_dim=0, end_dim=1) | |
| elif len(frame.shape) == 4: | |
| # shape is b*c*h*w | |
| need_reshape = False | |
| else: | |
| raise NotImplementedError | |
| f16, f8, f4 = self.key_encoder(frame) | |
| key, shrinkage, selection = self.key_proj(f16, need_sk, need_ek) | |
| if need_reshape: | |
| # B*C*T*H*W | |
| key = key.view(b, t, *key.shape[-3:]).transpose(1, 2).contiguous() | |
| if shrinkage is not None: | |
| shrinkage = shrinkage.view(b, t, *shrinkage.shape[-3:]).transpose(1, 2).contiguous() | |
| if selection is not None: | |
| selection = selection.view(b, t, *selection.shape[-3:]).transpose(1, 2).contiguous() | |
| # B*T*C*H*W | |
| f16 = f16.view(b, t, *f16.shape[-3:]) | |
| f8 = f8.view(b, t, *f8.shape[-3:]) | |
| f4 = f4.view(b, t, *f4.shape[-3:]) | |
| return key, shrinkage, selection, f16, f8, f4 | |
| def encode_value(self, frame, image_feat_f16, h16, masks, is_deep_update=True): | |
| num_objects = masks.shape[1] | |
| if num_objects != 1: | |
| others = torch.cat([ | |
| torch.sum( | |
| masks[:, [j for j in range(num_objects) if i!=j]] | |
| , dim=1, keepdim=True) | |
| for i in range(num_objects)], 1) | |
| else: | |
| others = torch.zeros_like(masks) | |
| g16, h16 = self.value_encoder(frame, image_feat_f16, h16, masks, others, is_deep_update) | |
| return g16, h16 | |
| # Used in training only. | |
| # This step is replaced by MemoryManager in test time | |
| def read_memory(self, query_key, query_selection, memory_key, | |
| memory_shrinkage, memory_value): | |
| """ | |
| query_key : B * CK * H * W | |
| query_selection : B * CK * H * W | |
| memory_key : B * CK * T * H * W | |
| memory_shrinkage: B * 1 * T * H * W | |
| memory_value : B * num_objects * CV * T * H * W | |
| """ | |
| batch_size, num_objects = memory_value.shape[:2] | |
| memory_value = memory_value.flatten(start_dim=1, end_dim=2) | |
| affinity = get_affinity(memory_key, memory_shrinkage, query_key, query_selection) | |
| memory = readout(affinity, memory_value) | |
| memory = memory.view(batch_size, num_objects, self.value_dim, *memory.shape[-2:]) | |
| return memory | |
| def segment(self, multi_scale_features, memory_readout, | |
| hidden_state, selector=None, h_out=True, strip_bg=True): | |
| hidden_state, logits = self.decoder(*multi_scale_features, hidden_state, memory_readout, h_out=h_out) | |
| prob = torch.sigmoid(logits) | |
| if selector is not None: | |
| prob = prob * selector | |
| logits, prob = aggregate(prob, dim=1, return_logits=True) | |
| if strip_bg: | |
| # Strip away the background | |
| prob = prob[:, 1:] | |
| return hidden_state, logits, prob | |
| def forward(self, mode, *args, **kwargs): | |
| if mode == 'encode_key': | |
| return self.encode_key(*args, **kwargs) | |
| elif mode == 'encode_value': | |
| return self.encode_value(*args, **kwargs) | |
| elif mode == 'read_memory': | |
| return self.read_memory(*args, **kwargs) | |
| elif mode == 'segment': | |
| return self.segment(*args, **kwargs) | |
| else: | |
| raise NotImplementedError | |
| def init_hyperparameters(self, config, model_path=None, map_location=None): | |
| """ | |
| Init three hyperparameters: key_dim, value_dim, and hidden_dim | |
| If model_path is provided, we load these from the model weights | |
| The actual parameters are then updated to the config in-place | |
| Otherwise we load it either from the config or default | |
| """ | |
| if model_path is not None: | |
| # load the model and key/value/hidden dimensions with some hacks | |
| # config is updated with the loaded parameters | |
| model_weights = torch.load(model_path, map_location=map_location) | |
| self.key_dim = model_weights['key_proj.key_proj.weight'].shape[0] | |
| self.value_dim = model_weights['value_encoder.fuser.block2.conv2.weight'].shape[0] | |
| self.disable_hidden = 'decoder.hidden_update.transform.weight' not in model_weights | |
| if self.disable_hidden: | |
| self.hidden_dim = 0 | |
| else: | |
| self.hidden_dim = model_weights['decoder.hidden_update.transform.weight'].shape[0]//3 | |
| print(f'Hyperparameters read from the model weights: ' | |
| f'C^k={self.key_dim}, C^v={self.value_dim}, C^h={self.hidden_dim}') | |
| else: | |
| model_weights = None | |
| # load dimensions from config or default | |
| if 'key_dim' not in config: | |
| self.key_dim = 64 | |
| print(f'key_dim not found in config. Set to default {self.key_dim}') | |
| else: | |
| self.key_dim = config['key_dim'] | |
| if 'value_dim' not in config: | |
| self.value_dim = 512 | |
| print(f'value_dim not found in config. Set to default {self.value_dim}') | |
| else: | |
| self.value_dim = config['value_dim'] | |
| if 'hidden_dim' not in config: | |
| self.hidden_dim = 64 | |
| print(f'hidden_dim not found in config. Set to default {self.hidden_dim}') | |
| else: | |
| self.hidden_dim = config['hidden_dim'] | |
| self.disable_hidden = (self.hidden_dim <= 0) | |
| config['key_dim'] = self.key_dim | |
| config['value_dim'] = self.value_dim | |
| config['hidden_dim'] = self.hidden_dim | |
| return model_weights | |
| def load_weights(self, src_dict, init_as_zero_if_needed=False): | |
| # Maps SO weight (without other_mask) to MO weight (with other_mask) | |
| for k in list(src_dict.keys()): | |
| if k == 'value_encoder.conv1.weight': | |
| if src_dict[k].shape[1] == 4: | |
| print('Converting weights from single object to multiple objects.') | |
| pads = torch.zeros((64,1,7,7), device=src_dict[k].device) | |
| if not init_as_zero_if_needed: | |
| print('Randomly initialized padding.') | |
| nn.init.orthogonal_(pads) | |
| else: | |
| print('Zero-initialized padding.') | |
| src_dict[k] = torch.cat([src_dict[k], pads], 1) | |
| self.load_state_dict(src_dict) | |