""" Multi-Turn Conversation Retrieval Evaluation for ViettelPay RAG System Generates multi-turn conversations and evaluates retrieval performance """ import json import os import sys import argparse import time from typing import Dict, List, Tuple, Optional, Union from pathlib import Path from collections import defaultdict import pandas as pd from tqdm import tqdm import re # Load environment variables from .env file from dotenv import load_dotenv load_dotenv() # Add the project root to Python path so we can import from src project_root = Path(__file__).parent.parent.parent sys.path.insert(0, str(project_root)) # Import existing components from src.evaluation.prompts import MULTI_TURN_CONVERSATION_GENERATION_PROMPT from src.knowledge_base.viettel_knowledge_base import ViettelKnowledgeBase from src.evaluation.single_turn_retrieval import SingleTurnRetrievalEvaluator from src.llm.llm_client import LLMClientFactory, BaseLLMClient from src.agent.nodes import query_enhancement_node, ViettelPayState from langchain_core.messages import HumanMessage class MultiTurnDatasetCreator: """Multi-turn conversation dataset creator for ViettelPay evaluation""" def __init__( self, gemini_api_key: str, knowledge_base: ViettelKnowledgeBase = None ): """ Initialize with Gemini API key and optional knowledge base Args: gemini_api_key: Google AI API key for Gemini knowledge_base: Pre-initialized ViettelKnowledgeBase instance """ self.llm_client = LLMClientFactory.create_client( "gemini", api_key=gemini_api_key, model="gemini-2.0-flash" ) self.knowledge_base = knowledge_base self.dataset = { "conversations": {}, "documents": {}, "metadata": { "total_chunks_processed": 0, "conversations_generated": 0, "creation_timestamp": time.time(), }, } print("✅ MultiTurnDatasetCreator initialized with Gemini 2.0 Flash") def generate_json_response( self, prompt: str, max_retries: int = 3 ) -> Optional[Dict]: """ Generate response and parse as JSON with retries Args: prompt: Input prompt max_retries: Maximum number of retry attempts Returns: Parsed JSON response or None if failed """ for attempt in range(max_retries): try: response = self.llm_client.generate(prompt, temperature=0.1) if response: # Clean response text response_text = response.strip() # Extract JSON from response (handle cases with extra text) json_match = re.search(r"\{.*\}", response_text, re.DOTALL) if json_match: json_text = json_match.group() return json.loads(json_text) else: # Try parsing the whole response return json.loads(response_text) except json.JSONDecodeError as e: print(f"⚠️ JSON parsing error (attempt {attempt + 1}): {e}") if attempt == max_retries - 1: print(f"❌ Failed to parse JSON after {max_retries} attempts") print( f"Raw response: {response if 'response' in locals() else 'No response'}" ) except Exception as e: print(f"⚠️ API error (attempt {attempt + 1}): {e}") if attempt < max_retries - 1: time.sleep(2**attempt) # Exponential backoff return None def get_all_chunks(self) -> List[Dict]: """ Get ALL chunks directly from ChromaDB vectorstore Reuse the same method from single-turn evaluation Returns: List of all document chunks with content and metadata """ print(f"📚 Retrieving ALL chunks directly from ChromaDB vectorstore...") if not self.knowledge_base: raise ValueError( "Knowledge base not provided. Please initialize with a ViettelKnowledgeBase instance." ) try: # Access the ChromaDB vectorstore directly if ( not hasattr(self.knowledge_base, "chroma_retriever") or not self.knowledge_base.chroma_retriever ): raise ValueError("ChromaDB retriever not found in knowledge base") # Get the vectorstore from the retriever vectorstore = self.knowledge_base.chroma_retriever.vectorstore # Get all documents directly from ChromaDB print(" Accessing ChromaDB collection...") all_docs = vectorstore.get(include=["documents", "metadatas"]) documents = all_docs["documents"] metadatas = all_docs["metadatas"] print(f" Found {len(documents)} documents in ChromaDB") # Convert to our expected format all_chunks = [] seen_content_hashes = set() for i, (content, metadata) in enumerate(zip(documents, metadatas)): # Create content hash for deduplication content_hash = hash(content[:300]) if ( content_hash not in seen_content_hashes and len(content.strip()) > 100 ): chunk_info = { "id": f"chunk_{len(all_chunks)}", "content": content, "metadata": metadata or {}, "source": "chromadb_direct", "content_length": len(content), "original_index": i, } all_chunks.append(chunk_info) seen_content_hashes.add(content_hash) print(f"✅ Retrieved {len(all_chunks)} unique chunks from ChromaDB") # Sort by content length (longer chunks first) all_chunks.sort(key=lambda x: x["content_length"], reverse=True) return all_chunks except Exception as e: print(f"❌ Error accessing ChromaDB directly: {e}") return [] def generate_conversations_for_chunk( self, chunk: Dict, num_conversations: int = 2 ) -> List[Dict]: """ Generate multi-turn conversations for a single chunk using Gemini Args: chunk: Chunk dictionary with content and metadata num_conversations: Number of conversations to generate per chunk Returns: List of conversation dictionaries """ content = chunk["content"] prompt = MULTI_TURN_CONVERSATION_GENERATION_PROMPT.format( num_conversations=num_conversations, content=content ) response_json = self.generate_json_response(prompt) if response_json and "conversations" in response_json: conversations = response_json["conversations"] # Create conversation objects with metadata conversation_objects = [] for i, conversation in enumerate(conversations): if len(conversation.get("turns", [])) >= 2: # At least 2 turns conversation_obj = { "id": f"conv_{chunk['id']}_{i}", "turns": conversation["turns"], "conversation_type": conversation.get("type", "general"), "source_chunk": chunk["id"], "chunk_metadata": chunk["metadata"], "generation_method": "gemini_json", } conversation_objects.append(conversation_obj) return conversation_objects else: print(f"⚠️ No valid conversations generated for chunk {chunk['id']}") return [] def create_multi_turn_dataset( self, conversations_per_chunk: int = 2, save_path: str = "evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_conversations.json", ) -> Dict: """ Create multi-turn conversation dataset using ALL chunks Args: conversations_per_chunk: Number of conversations to generate per chunk save_path: Path to save the dataset JSON file Returns: Complete dataset dictionary with conversations """ print(f"\n🚀 Creating multi-turn conversation dataset...") print(f" Target: Process ALL chunks from knowledge base") print(f" Conversations per chunk: {conversations_per_chunk}") # Step 1: Get all chunks all_chunks = self.get_all_chunks() total_chunks = len(all_chunks) if total_chunks == 0: raise ValueError("No chunks found in knowledge base!") print(f"✅ Found {total_chunks} chunks to process") # Step 2: Generate conversations for all chunks print(f"\n💬 Generating conversations for {total_chunks} chunks...") all_conversations = [] for chunk in tqdm(all_chunks, desc="Generating conversations"): conversations = self.generate_conversations_for_chunk( chunk, conversations_per_chunk ) all_conversations.extend(conversations) time.sleep(0.2) # Rate limiting for Gemini API # Step 3: Populate dataset structure self.dataset["documents"] = { chunk["id"]: chunk["content"] for chunk in all_chunks } self.dataset["conversations"] = { conv["id"]: { "turns": conv["turns"], "conversation_type": conv["conversation_type"], "source_chunk": conv["source_chunk"], "chunk_metadata": conv["chunk_metadata"], "generation_method": conv["generation_method"], } for conv in all_conversations } # Step 4: Update metadata self.dataset["metadata"].update( { "total_chunks_processed": total_chunks, "conversations_generated": len(all_conversations), "conversations_per_chunk": conversations_per_chunk, "completion_timestamp": time.time(), } ) # Step 5: Save dataset os.makedirs( os.path.dirname(save_path) if os.path.dirname(save_path) else ".", exist_ok=True, ) with open(save_path, "w", encoding="utf-8") as f: json.dump(self.dataset, f, ensure_ascii=False, indent=2) print(f"\n✅ Multi-turn conversation dataset created successfully!") print(f" 📁 Saved to: {save_path}") print(f" 📊 Statistics:") print(f" • Chunks processed: {total_chunks}") print(f" • Conversations generated: {len(all_conversations)}") print( f" • Avg conversations per chunk: {len(all_conversations)/total_chunks:.1f}" ) return self.dataset class ConversationEnhancer: """Convert multi-turn conversations to enhanced queries using existing query enhancement""" def __init__(self, gemini_api_key: str): """Initialize with Gemini API key for query enhancement""" self.llm_client = LLMClientFactory.create_client( "gemini", api_key=gemini_api_key, model="gemini-2.0-flash-lite" ) print("✅ ConversationEnhancer initialized") def enhance_conversation(self, conversation_turns: List[Dict]) -> str: """ Convert a multi-turn conversation to an enhanced query Args: conversation_turns: List of turn dictionaries with role and content Returns: Enhanced query string """ try: # Create messages in the format expected by query_enhancement_node messages = [] for turn in conversation_turns: if turn["role"] == "user": messages.append(HumanMessage(content=turn["content"])) # Create a mock state for the query enhancement node state = ViettelPayState(messages=messages) # Use the existing query enhancement node enhanced_state = query_enhancement_node(state, self.llm_client) enhanced_query = enhanced_state.get("enhanced_query", "") if not enhanced_query: # Fallback: concatenate all user messages user_messages = [ turn["content"] for turn in conversation_turns if turn["role"] == "user" ] enhanced_query = " ".join(user_messages) return enhanced_query except Exception as e: print(f"❌ Error enhancing conversation: {e}") # Fallback: concatenate all user messages user_messages = [ turn["content"] for turn in conversation_turns if turn["role"] == "user" ] return " ".join(user_messages) def convert_dataset_to_single_turn_format( self, multi_turn_dataset: Dict, save_path: str = "evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_enhanced.json", ) -> Dict: """ Convert multi-turn conversation dataset to single-turn format with enhanced queries Args: multi_turn_dataset: Multi-turn conversation dataset save_path: Path to save the converted dataset Returns: Single-turn format dataset """ print(f"\n🔄 Converting multi-turn conversations to enhanced queries...") conversations = multi_turn_dataset["conversations"] documents = multi_turn_dataset["documents"] # Initialize single-turn format dataset single_turn_dataset = { "queries": {}, "documents": documents, "conversation_metadata": {}, "metadata": { "total_conversations_processed": len(conversations), "enhanced_queries_generated": 0, "conversion_timestamp": time.time(), "original_dataset_metadata": multi_turn_dataset.get("metadata", {}), }, } enhanced_count = 0 # Process each conversation for conv_id, conv_data in tqdm( conversations.items(), desc="Enhancing conversations" ): try: # Extract turns turns = conv_data["turns"] # Enhance conversation to single query enhanced_query = self.enhance_conversation(turns) if enhanced_query and len(enhanced_query.strip()) > 5: single_turn_dataset["queries"][conv_id] = enhanced_query single_turn_dataset["conversation_metadata"][conv_id] = { "original_conversation": turns, "conversation_type": conv_data.get( "conversation_type", "general" ), "source_chunk": conv_data["source_chunk"], "chunk_metadata": conv_data.get("chunk_metadata", {}), "generation_method": conv_data.get( "generation_method", "unknown" ), } enhanced_count += 1 time.sleep(0.1) # Small delay for rate limiting except Exception as e: print(f"⚠️ Error processing conversation {conv_id}: {e}") continue # Update metadata single_turn_dataset["metadata"]["enhanced_queries_generated"] = enhanced_count # Save converted dataset os.makedirs( os.path.dirname(save_path) if os.path.dirname(save_path) else ".", exist_ok=True, ) with open(save_path, "w", encoding="utf-8") as f: json.dump(single_turn_dataset, f, ensure_ascii=False, indent=2) print(f"✅ Conversion completed successfully!") print(f" 📁 Saved to: {save_path}") print(f" 📊 Statistics:") print(f" • Conversations processed: {len(conversations)}") print(f" • Enhanced queries generated: {enhanced_count}") print(f" • Success rate: {enhanced_count/len(conversations)*100:.1f}%") return single_turn_dataset class MultiTurnEvaluator: """Extended evaluator for multi-turn conversation retrieval with additional analysis""" def __init__(self, dataset: Dict, knowledge_base: ViettelKnowledgeBase): """ Initialize evaluator with dataset and knowledge base Args: dataset: Evaluation dataset in single-turn format (from converted multi-turn) knowledge_base: ViettelKnowledgeBase instance to evaluate """ self.dataset = dataset self.knowledge_base = knowledge_base self.single_turn_evaluator = SingleTurnRetrievalEvaluator( dataset, knowledge_base ) def _get_conversation_metadata(self, query_id: str) -> Dict: """ Get conversation metadata for a query, handling both formats Args: query_id: Query identifier Returns: Metadata dictionary """ # First try conversation_metadata (multi-turn format) conversation_metadata = self.dataset.get("conversation_metadata", {}) if query_id in conversation_metadata: return conversation_metadata[query_id] # Fallback to question_metadata (single-turn format) question_metadata = self.dataset.get("question_metadata", {}) if query_id in question_metadata: # Convert single-turn format to multi-turn format for consistency meta = question_metadata[query_id] return { "conversation_type": "single_turn", "source_chunk": meta.get("source_chunk"), "original_conversation": [ {"role": "user", "content": self.dataset["queries"][query_id]} ], "chunk_metadata": meta.get("chunk_metadata", {}), "generation_method": meta.get("generation_method", "unknown"), } return {} def evaluate_multi_turn_performance( self, k_values: List[int] = [1, 3, 5, 10] ) -> Dict: """ Evaluate multi-turn conversation retrieval performance Args: k_values: List of k values to evaluate Returns: Dictionary with evaluation results and multi-turn specific analysis """ print(f"\n🔍 Running multi-turn conversation evaluation...") # Step 1: Run standard single-turn evaluation base_results = self.single_turn_evaluator.evaluate(k_values) # Step 2: Add multi-turn specific analysis # Analyze by conversation type results_by_type = defaultdict( lambda: {"hit_rates": {k: [] for k in k_values}, "rr_scores": []} ) for query_id, query_result in base_results["per_query_results"].items(): conv_meta = self._get_conversation_metadata(query_id) conv_type = conv_meta.get("conversation_type", "unknown") # Add to type-specific results results_by_type[conv_type]["rr_scores"].append(query_result.get("rr", 0)) for k in k_values: hit_rate = query_result.get("hit_rates", {}).get(k, 0) results_by_type[conv_type]["hit_rates"][k].append(hit_rate) # Calculate averages by conversation type type_analysis = {} for conv_type, type_results in results_by_type.items(): type_analysis[conv_type] = { "hit_rates": { k: sum(hits) / len(hits) if hits else 0 for k, hits in type_results["hit_rates"].items() }, "mrr": ( sum(type_results["rr_scores"]) / len(type_results["rr_scores"]) if type_results["rr_scores"] else 0 ), "total_conversations": len(type_results["rr_scores"]), } # Analyze conversation length impact turn_length_analysis = self._analyze_by_conversation_length( base_results, k_values ) # Combine results multi_turn_results = { **base_results, # Include all base results "conversation_type_analysis": type_analysis, "turn_length_analysis": turn_length_analysis, "multi_turn_metadata": { "evaluation_type": "multi_turn_conversation", "conversation_types": list(type_analysis.keys()), "total_conversation_types": len(type_analysis), }, } return multi_turn_results def _analyze_by_conversation_length( self, base_results: Dict, k_values: List[int] ) -> Dict: """Analyze performance by conversation turn length""" length_analysis = defaultdict( lambda: {"hit_rates": {k: [] for k in k_values}, "rr_scores": []} ) for query_id, query_result in base_results["per_query_results"].items(): conv_meta = self._get_conversation_metadata(query_id) original_conv = conv_meta.get("original_conversation", []) turn_count = len( [turn for turn in original_conv if turn.get("role") == "user"] ) # Categorize by turn length if turn_count == 1: length_category = "1_turn" # Single-turn questions elif turn_count == 2: length_category = "2_turns" elif turn_count == 3: length_category = "3_turns" elif turn_count >= 4: length_category = "4+_turns" else: length_category = "unknown_turns" # Add to length-specific results length_analysis[length_category]["rr_scores"].append( query_result.get("rr", 0) ) for k in k_values: hit_rate = query_result.get("hit_rates", {}).get(k, 0) length_analysis[length_category]["hit_rates"][k].append(hit_rate) # Calculate averages by turn length final_length_analysis = {} for length_cat, length_results in length_analysis.items(): final_length_analysis[length_cat] = { "hit_rates": { k: sum(hits) / len(hits) if hits else 0 for k, hits in length_results["hit_rates"].items() }, "mrr": ( sum(length_results["rr_scores"]) / len(length_results["rr_scores"]) if length_results["rr_scores"] else 0 ), "total_conversations": len(length_results["rr_scores"]), } return final_length_analysis def print_multi_turn_results(self, results: Dict): """Print multi-turn evaluation results with additional analysis""" # Print base results first self.single_turn_evaluator.print_evaluation_results(results) # Print multi-turn specific analysis print(f"\n🔍 MULTI-TURN SPECIFIC ANALYSIS") print("=" * 60) # Conversation type analysis type_analysis = results.get("conversation_type_analysis", {}) if type_analysis: print(f"\n📊 Performance by Conversation Type:") print(f"{'Type':<20} {'MRR':<8} {'Hit@5':<8} {'Count':<8}") print("-" * 50) for conv_type, analysis in type_analysis.items(): mrr = analysis["mrr"] hit_at_5 = analysis["hit_rates"].get(5, 0) * 100 count = analysis["total_conversations"] print(f"{conv_type:<20} {mrr:<8.3f} {hit_at_5:<8.1f}% {count:<8}") # Turn length analysis length_analysis = results.get("turn_length_analysis", {}) if length_analysis: print(f"\n📊 Performance by Conversation Length:") print(f"{'Length':<12} {'MRR':<8} {'Hit@5':<8} {'Count':<8}") print("-" * 40) for length_cat, analysis in length_analysis.items(): mrr = analysis["mrr"] hit_at_5 = analysis["hit_rates"].get(5, 0) * 100 count = analysis["total_conversations"] print(f"{length_cat:<12} {mrr:<8.3f} {hit_at_5:<8.1f}% {count:<8}") print(f"\n💡 Multi-Turn Insights:") # Best performing conversation type if type_analysis: best_type = max(type_analysis.keys(), key=lambda k: type_analysis[k]["mrr"]) worst_type = min( type_analysis.keys(), key=lambda k: type_analysis[k]["mrr"] ) print( f" • Best conversation type: {best_type} (MRR: {type_analysis[best_type]['mrr']:.3f})" ) print( f" • Worst conversation type: {worst_type} (MRR: {type_analysis[worst_type]['mrr']:.3f})" ) # Turn length insights if length_analysis: best_length = max( length_analysis.keys(), key=lambda k: length_analysis[k]["mrr"] ) print( f" • Best performing length: {best_length} (MRR: {length_analysis[best_length]['mrr']:.3f})" ) def main(): """Main function for multi-turn conversation evaluation""" parser = argparse.ArgumentParser( description="ViettelPay Multi-Turn Conversation Retrieval Evaluation" ) parser.add_argument( "--mode", choices=["create", "enhance", "evaluate", "full"], default="full", help="Mode: create conversations, enhance to queries, evaluate, or full pipeline", ) parser.add_argument( "--conversations-dataset", default="evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_conversations.json", help="Path to multi-turn conversations dataset", ) parser.add_argument( "--enhanced-dataset", default="evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_enhanced.json", help="Path to enhanced queries dataset", ) parser.add_argument( "--results-path", default="evaluation_data/results/multi_turn_retrieval/viettelpay_multiturn_results.json", help="Path to save evaluation results", ) parser.add_argument( "--conversations-per-chunk", type=int, default=3, help="Number of conversations per chunk", ) parser.add_argument( "--k-values", nargs="+", type=int, default=[1, 3, 5, 10], help="K values for evaluation", ) parser.add_argument( "--knowledge-base-path", default="./knowledge_base", help="Path to knowledge base", ) args = parser.parse_args() # Configuration GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") if not GEMINI_API_KEY: print("❌ Please set GEMINI_API_KEY environment variable") return try: # Initialize knowledge base print("🔧 Initializing ViettelPay knowledge base...") kb = ViettelKnowledgeBase() if not kb.load_knowledge_base(args.knowledge_base_path): print( "❌ Failed to load knowledge base. Please run build_database_script.py first." ) return # Step 1: Create multi-turn conversations if requested if args.mode in ["create", "full"]: print(f"\n🎯 Creating multi-turn conversation dataset...") creator = MultiTurnDatasetCreator(GEMINI_API_KEY, kb) conversations_dataset = creator.create_multi_turn_dataset( conversations_per_chunk=args.conversations_per_chunk, save_path=args.conversations_dataset, ) # Step 2: Enhance conversations to queries if requested if args.mode in ["enhance", "full"]: print(f"\n⚡ Converting conversations to enhanced queries...") # Load conversations if not created in this run if args.mode == "enhance": if not os.path.exists(args.conversations_dataset): print( f"❌ Conversations dataset not found: {args.conversations_dataset}" ) return with open(args.conversations_dataset, "r", encoding="utf-8") as f: conversations_dataset = json.load(f) # Enhance conversations enhancer = ConversationEnhancer(GEMINI_API_KEY) enhanced_dataset = enhancer.convert_dataset_to_single_turn_format( conversations_dataset, args.enhanced_dataset ) # Step 3: Evaluate if requested if args.mode in ["evaluate", "full"]: print(f"\n📊 Evaluating multi-turn conversation retrieval...") # Load enhanced dataset if not created in this run if args.mode == "evaluate": if not os.path.exists(args.enhanced_dataset): print(f"❌ Enhanced dataset not found: {args.enhanced_dataset}") return with open(args.enhanced_dataset, "r", encoding="utf-8") as f: enhanced_dataset = json.load(f) # Run evaluation evaluator = MultiTurnEvaluator(enhanced_dataset, kb) results = evaluator.evaluate_multi_turn_performance(k_values=args.k_values) evaluator.print_multi_turn_results(results) # Save results if args.results_path: with open(args.results_path, "w", encoding="utf-8") as f: json.dump(results, f, ensure_ascii=False, indent=2) print(f"\n💾 Results saved to: {args.results_path}") print(f"\n✅ Multi-turn evaluation completed successfully!") print(f"\n💡 Next steps:") print(f" 1. Compare multi-turn vs single-turn performance") print(f" 2. Analyze conversation types that work best") print(f" 3. Optimize query enhancement for multi-turn scenarios") except Exception as e: print(f"❌ Error in main execution: {e}") import traceback traceback.print_exc() if __name__ == "__main__": main()