File size: 5,722 Bytes
60d1d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
LLM Client Abstraction Layer
Supports multiple LLM providers without hardcoding
"""

from abc import ABC, abstractmethod
from typing import Dict, Any, Optional
import os

# Import configuration utility
from src.utils.config import get_gemini_api_key, get_openai_api_key


class BaseLLMClient(ABC):
    """Abstract base class for LLM clients"""

    def __init__(self, **kwargs):
        pass

    @abstractmethod
    def generate(self, prompt: str, **kwargs) -> str:
        """Generate response from prompt"""
        pass

    @abstractmethod
    def is_available(self) -> bool:
        """Check if LLM service is available"""
        pass


class GeminiClient(BaseLLMClient):
    """Google Gemini client implementation"""

    def __init__(self, api_key: Optional[str] = None, model: str = "gemini-2.0-flash"):
        self.api_key = api_key or get_gemini_api_key()
        self.model = model

        if not self.api_key:
            raise ValueError("Gemini API key not provided")

        try:
            import google.generativeai as genai

            genai.configure(api_key=self.api_key)
            self.client = genai.GenerativeModel(self.model)
            print(f"✅ Gemini client initialized with model: {self.model}")
        except ImportError:
            raise ImportError("google-generativeai package not installed")

    def generate(self, prompt: str, **kwargs) -> str:
        """Generate response using Gemini"""
        try:
            # Set default temperature to 0.1 for consistency
            generation_config = {
                "temperature": kwargs.get("temperature", 0.1),
                "top_p": kwargs.get("top_p", 0.8),
                "top_k": kwargs.get("top_k", 40),
                "max_output_tokens": kwargs.get("max_output_tokens", 2048),
            }

            response = self.client.generate_content(
                prompt, generation_config=generation_config
            )
            return response.text
        except Exception as e:
            print(f"❌ Gemini generation error: {e}")
            raise

    def is_available(self) -> bool:
        """Check Gemini availability"""
        try:
            test_response = self.client.generate_content("Hello")
            return bool(test_response.text)
        except:
            return False


class OpenAIClient(BaseLLMClient):
    """OpenAI client implementation"""

    def __init__(self, api_key: Optional[str] = None, model: str = "gpt-4"):
        self.api_key = api_key or get_openai_api_key()
        self.model = model

        if not self.api_key:
            raise ValueError("OpenAI API key not provided")

        try:
            import openai

            self.client = openai.OpenAI(api_key=self.api_key)
            print(f"✅ OpenAI client initialized with model: {self.model}")
        except ImportError:
            raise ImportError("openai package not installed")

    def generate(self, prompt: str, **kwargs) -> str:
        """Generate response using OpenAI"""
        try:
            # Set default temperature to 0.1 for consistency
            openai_kwargs = {
                "temperature": kwargs.get("temperature", 0.1),
                "top_p": kwargs.get("top_p", 1.0),
                "max_tokens": kwargs.get("max_tokens", 2048),
            }
            # Remove any Gemini-specific parameters
            openai_kwargs.update(
                {
                    k: v
                    for k, v in kwargs.items()
                    if k
                    in [
                        "temperature",
                        "top_p",
                        "max_tokens",
                        "frequency_penalty",
                        "presence_penalty",
                    ]
                }
            )

            response = self.client.chat.completions.create(
                model=self.model,
                messages=[{"role": "user", "content": prompt}],
                **openai_kwargs,
            )
            return response.choices[0].message.content
        except Exception as e:
            print(f"❌ OpenAI generation error: {e}")
            raise

    def is_available(self) -> bool:
        """Check OpenAI availability"""
        try:
            response = self.client.chat.completions.create(
                model=self.model,
                messages=[{"role": "user", "content": "Hello"}],
                max_tokens=5,
            )
            return bool(response.choices[0].message.content)
        except:
            return False


class LLMClientFactory:
    """Factory for creating LLM clients"""

    SUPPORTED_PROVIDERS = {
        "gemini": GeminiClient,
        "openai": OpenAIClient,
    }

    @classmethod
    def create_client(self, provider: str = "gemini", **kwargs) -> BaseLLMClient:
        """Create LLM client by provider name"""

        if provider not in self.SUPPORTED_PROVIDERS:
            raise ValueError(
                f"Unsupported provider: {provider}. Supported: {list(self.SUPPORTED_PROVIDERS.keys())}"
            )

        client_class = self.SUPPORTED_PROVIDERS[provider]
        return client_class(**kwargs)

    @classmethod
    def get_available_providers(cls) -> list:
        """Get list of available providers"""
        return list(cls.SUPPORTED_PROVIDERS.keys())


# Usage example
if __name__ == "__main__":
    # Test Gemini client
    try:
        client = LLMClientFactory.create_client("gemini")
        if client.is_available():
            response = client.generate("Xin chào, bạn có khỏe không?")
            print(f"Response: {response}")
        else:
            print("Gemini not available")
    except Exception as e:
        print(f"Error: {e}")