Spaces:
Running
Running
File size: 31,051 Bytes
60d1d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
"""
Single Turn Synthetic Retrieval Evaluation Dataset Creator for ViettelPay RAG System
Uses Google Gemini 2.0 Flash with JSON responses for better parsing
Simplified version with only MRR and hit rate evaluation (no qrels generation)
"""
import json
import os
import sys
import argparse
import time
from typing import Dict, List, Tuple, Optional, Union
from pathlib import Path
from collections import defaultdict
import pandas as pd
from tqdm import tqdm
import re
# Load environment variables from .env file
from dotenv import load_dotenv
load_dotenv()
# Add the project root to Python path so we can import from src
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))
# Import prompts (only the ones we need)
from src.evaluation.prompts import (
QUESTION_GENERATION_PROMPT,
QUESTION_QUALITY_CHECK_PROMPT,
CONTEXT_QUALITY_CHECK_PROMPT,
QUESTION_EVOLUTION_PROMPT,
)
# Import your existing knowledge base and LLM client
from src.knowledge_base.viettel_knowledge_base import ViettelKnowledgeBase
from src.llm.llm_client import LLMClientFactory, BaseLLMClient
class SingleTurnDatasetCreator:
"""Single turn synthetic evaluation dataset creator with JSON responses and all chunks processing"""
def __init__(
self, gemini_api_key: str, knowledge_base: ViettelKnowledgeBase = None
):
"""
Initialize with Gemini API key and optional knowledge base
Args:
gemini_api_key: Google AI API key for Gemini
knowledge_base: Pre-initialized ViettelKnowledgeBase instance
"""
self.llm_client = LLMClientFactory.create_client(
"gemini", api_key=gemini_api_key, model="gemini-2.0-flash"
)
self.knowledge_base = knowledge_base
self.dataset = {
"queries": {},
"documents": {},
"metadata": {
"total_chunks_processed": 0,
"questions_generated": 0,
"creation_timestamp": time.time(),
},
}
print("✅ SingleTurnDatasetCreator initialized with Gemini 2.0 Flash")
def generate_json_response(
self, prompt: str, max_retries: int = 3
) -> Optional[Dict]:
"""
Generate response and parse as JSON with retries
Args:
prompt: Input prompt
max_retries: Maximum number of retry attempts
Returns:
Parsed JSON response or None if failed
"""
for attempt in range(max_retries):
try:
response = self.llm_client.generate(prompt, temperature=0.1)
if response:
# Clean response text
response_text = response.strip()
# Extract JSON from response (handle cases with extra text)
json_match = re.search(r"\{.*\}", response_text, re.DOTALL)
if json_match:
json_text = json_match.group()
return json.loads(json_text)
else:
# Try parsing the whole response
return json.loads(response_text)
except json.JSONDecodeError as e:
print(f"⚠️ JSON parsing error (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
print(f"❌ Failed to parse JSON after {max_retries} attempts")
print(
f"Raw response: {response if 'response' in locals() else 'No response'}"
)
except Exception as e:
print(f"⚠️ API error (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(2**attempt) # Exponential backoff
return None
def get_all_chunks(self) -> List[Dict]:
"""
Get ALL chunks directly from ChromaDB vectorstore (no sampling)
Returns:
List of all document chunks with content and metadata
"""
print(f"📚 Retrieving ALL chunks directly from ChromaDB vectorstore...")
if not self.knowledge_base:
raise ValueError(
"Knowledge base not provided. Please initialize with a ViettelKnowledgeBase instance."
)
try:
# Access the ChromaDB vectorstore directly
if (
not hasattr(self.knowledge_base, "chroma_retriever")
or not self.knowledge_base.chroma_retriever
):
raise ValueError("ChromaDB retriever not found in knowledge base")
# Get the vectorstore from the retriever
vectorstore = self.knowledge_base.chroma_retriever.vectorstore
# Get all documents directly from ChromaDB
print(" Accessing ChromaDB collection...")
all_docs = vectorstore.get(include=["documents", "metadatas"])
documents = all_docs["documents"]
metadatas = all_docs["metadatas"]
print(f" Found {len(documents)} documents in ChromaDB")
print(f" Sample document preview:")
for i, doc in enumerate(documents[:3]):
print(f" Doc {i+1}: {doc[:100]}...")
# Convert to our expected format
all_chunks = []
seen_content_hashes = set()
for i, (content, metadata) in enumerate(zip(documents, metadatas)):
# Create content hash for deduplication (just in case)
content_hash = hash(content[:300])
if (
content_hash not in seen_content_hashes
and len(content.strip()) > 50
):
chunk_info = {
"id": f"chunk_{len(all_chunks)}",
"content": content,
"metadata": metadata or {},
"source": "chromadb_direct",
"content_length": len(content),
"original_index": i,
}
all_chunks.append(chunk_info)
seen_content_hashes.add(content_hash)
else:
if content_hash in seen_content_hashes:
print(f" ⚠️ Skipping duplicate content at index {i}")
else:
print(
f" ⚠️ Skipping short content at index {i} (length: {len(content.strip())})"
)
print(f"✅ Retrieved {len(all_chunks)} unique chunks from ChromaDB")
print(
f" Filtered out {len(documents) - len(all_chunks)} duplicates/short chunks"
)
# Sort by content length (longer chunks first, usually more informative)
all_chunks.sort(key=lambda x: x["content_length"], reverse=True)
# Display statistics
avg_length = sum(chunk["content_length"] for chunk in all_chunks) / len(
all_chunks
)
min_length = min(chunk["content_length"] for chunk in all_chunks)
max_length = max(chunk["content_length"] for chunk in all_chunks)
print(f" 📊 Chunk Statistics:")
print(f" • Average length: {avg_length:.0f} characters")
print(f" • Min length: {min_length} characters")
print(f" • Max length: {max_length} characters")
return all_chunks
except Exception as e:
print(f"❌ Error accessing ChromaDB directly: {e}")
print(f" Falling back to search-based method...")
return self._get_all_chunks_fallback()
def _get_all_chunks_fallback(self) -> List[Dict]:
"""
Fallback method using search queries if direct ChromaDB access fails
Returns:
List of document chunks retrieved via search
"""
print(f"🔄 Using fallback search-based chunk retrieval...")
# Use comprehensive search terms to capture most content
comprehensive_queries = [
"ViettelPay",
"nạp",
"cước",
"giao dịch",
"thanh toán",
"lỗi",
"hủy",
"thẻ",
"chuyển",
"tiền",
"quy định",
"phí",
"dịch vụ",
"tài khoản",
"ngân hàng",
"OTP",
"PIN",
"mã",
"số",
"điện thoại",
"internet",
"truyền hình",
"homephone",
"cố định",
"game",
"Viettel",
"Mobifone",
# Add some Vietnamese words that might not be captured above
"ứng dụng",
"khách hàng",
"hỗ trợ",
"kiểm tra",
"xác nhận",
"bảo mật",
]
all_chunks = []
seen_content_hashes = set()
for query in comprehensive_queries:
try:
# Search with large k to get as many chunks as possible
docs = self.knowledge_base.search(query, top_k=50)
for doc in docs:
# Create content hash for deduplication
content_hash = hash(doc.page_content[:300])
if (
content_hash not in seen_content_hashes
and len(doc.page_content.strip()) > 50
):
chunk_info = {
"id": f"chunk_{len(all_chunks)}",
"content": doc.page_content,
"metadata": doc.metadata,
"source": f"search_{query}",
"content_length": len(doc.page_content),
}
all_chunks.append(chunk_info)
seen_content_hashes.add(content_hash)
except Exception as e:
print(f"⚠️ Error searching for '{query}': {e}")
continue
print(f"✅ Fallback method retrieved {len(all_chunks)} unique chunks")
# Sort by content length
all_chunks.sort(key=lambda x: x["content_length"], reverse=True)
return all_chunks
def generate_questions_for_chunk(
self, chunk: Dict, num_questions: int = 2
) -> List[Dict]:
"""
Generate questions for a single chunk using Gemini with JSON response
Args:
chunk: Chunk dictionary with content and metadata
num_questions: Number of questions to generate per chunk
Returns:
List of question dictionaries with metadata
"""
content = chunk["content"]
prompt = QUESTION_GENERATION_PROMPT.format(
num_questions=num_questions, content=content
)
response_json = self.generate_json_response(prompt)
if response_json and "questions" in response_json:
questions = response_json["questions"]
# Create question objects with metadata
question_objects = []
for i, question_text in enumerate(questions):
if len(question_text.strip()) > 5: # Filter very short questions
question_obj = {
"id": f"q_{chunk['id']}_{i}",
"text": question_text.strip(),
"source_chunk": chunk["id"],
"chunk_metadata": chunk["metadata"],
"generation_method": "gemini_json",
}
question_objects.append(question_obj)
return question_objects
else:
print(f"⚠️ No valid questions generated for chunk {chunk['id']}")
return []
def check_context_quality(self, chunk: Dict) -> bool:
"""
Check if a chunk is suitable for question generation
Args:
chunk: Chunk dictionary
Returns:
True if chunk should be used, False otherwise
"""
content = chunk["content"]
# Basic checks first
if len(content.strip()) < 100:
return False
# Use Gemini for quality assessment
prompt = CONTEXT_QUALITY_CHECK_PROMPT.format(content=content[:1000])
response_json = self.generate_json_response(prompt)
if response_json:
return response_json.get("use_context", True)
else:
# Fallback to basic heuristics
return len(content.strip()) > 100 and len(content.split()) > 20
def create_complete_dataset(
self,
questions_per_chunk: int = 2,
save_path: str = "evaluation_data/datasets/single_turn_retrieval/viettelpay_complete_eval_dataset.json",
quality_check: bool = True,
) -> Dict:
"""
Create complete synthetic evaluation dataset using ALL chunks
Args:
questions_per_chunk: Number of questions to generate per chunk
save_path: Path to save the dataset JSON file
quality_check: Whether to perform quality checks on chunks
Returns:
Complete dataset dictionary
"""
print(f"\n🚀 Creating simplified synthetic evaluation dataset...")
print(f" Target: Process ALL chunks from knowledge base")
print(f" Questions per chunk: {questions_per_chunk}")
print(f" Quality check: {quality_check}")
print(f" Evaluation method: MRR and Hit Rates only (no qrels)")
# Step 1: Get all chunks
all_chunks = self.get_all_chunks()
total_chunks = len(all_chunks)
if total_chunks == 0:
raise ValueError("No chunks found in knowledge base!")
print(f"✅ Found {total_chunks} chunks to process")
# Step 2: Quality filtering (optional)
if quality_check:
print(f"\n🔍 Performing quality checks on chunks...")
quality_chunks = []
for chunk in tqdm(all_chunks, desc="Quality checking"):
if self.check_context_quality(chunk):
quality_chunks.append(chunk)
time.sleep(0.1) # Rate limiting
print(
f"✅ {len(quality_chunks)}/{total_chunks} chunks passed quality check"
)
chunks_to_process = quality_chunks
else:
chunks_to_process = all_chunks
# Step 3: Generate questions for all chunks
print(f"\n📝 Generating questions for {len(chunks_to_process)} chunks...")
all_questions = []
for chunk in tqdm(chunks_to_process, desc="Generating questions"):
questions = self.generate_questions_for_chunk(chunk, questions_per_chunk)
all_questions.extend(questions)
time.sleep(0.2) # Rate limiting for Gemini API
print(
f"✅ Generated {len(all_questions)} questions from {len(chunks_to_process)} chunks"
)
# Step 4: Populate dataset structure
self.dataset["documents"] = {
chunk["id"]: chunk["content"] for chunk in chunks_to_process
}
self.dataset["queries"] = {q["id"]: q["text"] for q in all_questions}
# Add question metadata
question_metadata = {
q["id"]: {
"source_chunk": q["source_chunk"],
"chunk_metadata": q["chunk_metadata"],
"generation_method": q["generation_method"],
}
for q in all_questions
}
self.dataset["question_metadata"] = question_metadata
# Step 5: Update metadata
self.dataset["metadata"].update(
{
"total_chunks_processed": len(chunks_to_process),
"total_chunks_available": total_chunks,
"questions_generated": len(all_questions),
"questions_per_chunk": questions_per_chunk,
"quality_check_enabled": quality_check,
"evaluation_method": "mrr_hit_rates_only",
"completion_timestamp": time.time(),
}
)
# Step 6: Save dataset
os.makedirs(
os.path.dirname(save_path) if os.path.dirname(save_path) else ".",
exist_ok=True,
)
with open(save_path, "w", encoding="utf-8") as f:
json.dump(self.dataset, f, ensure_ascii=False, indent=2)
print(f"\n✅ COMPLETE dataset created successfully!")
print(f" 📁 Saved to: {save_path}")
print(f" 📊 Statistics:")
print(f" • Chunks processed: {len(chunks_to_process)}/{total_chunks}")
print(f" • Questions generated: {len(all_questions)}")
print(f" • Evaluation method: MRR and Hit Rates only")
print(
f" • Coverage: {len(chunks_to_process)/total_chunks*100:.1f}% of knowledge base"
)
return self.dataset
def load_dataset(self, dataset_path: str) -> Dict:
"""Load dataset from JSON file with metadata"""
with open(dataset_path, "r", encoding="utf-8") as f:
self.dataset = json.load(f)
metadata = self.dataset.get("metadata", {})
print(f"📖 Loaded dataset from {dataset_path}")
print(f" 📊 Dataset Statistics:")
print(f" • Queries: {len(self.dataset['queries'])}")
print(f" • Documents: {len(self.dataset['documents'])}")
print(f" • Created: {time.ctime(metadata.get('creation_timestamp', 0))}")
return self.dataset
class SingleTurnRetrievalEvaluator:
"""Simplified retrieval evaluator with only MRR and hit rates"""
def __init__(self, dataset: Dict, knowledge_base: ViettelKnowledgeBase):
"""
Initialize evaluator with dataset and knowledge base
Args:
dataset: Evaluation dataset with queries and documents
knowledge_base: ViettelKnowledgeBase instance to evaluate
"""
self.dataset = dataset
self.knowledge_base = knowledge_base
self.results = {}
def _match_retrieved_documents(self, retrieved_docs) -> List[str]:
"""
Enhanced document matching with multiple strategies
Args:
retrieved_docs: Retrieved Document objects from knowledge base
Returns:
List of matched document IDs
"""
matched_ids = []
for doc in retrieved_docs:
# Strategy 1: Try to find exact content match
doc_id = self._find_exact_content_match(doc.page_content)
if not doc_id:
# Strategy 2: Try fuzzy content matching
doc_id = self._find_fuzzy_content_match(doc.page_content)
if doc_id:
matched_ids.append(doc_id)
return matched_ids
def _find_exact_content_match(self, retrieved_content: str) -> Optional[str]:
"""Find exact content match"""
for doc_id, doc_content in self.dataset["documents"].items():
if retrieved_content.strip() == doc_content.strip():
return doc_id
return None
def _find_fuzzy_content_match(
self, retrieved_content: str, min_overlap: int = 50
) -> Optional[str]:
"""Find fuzzy content match with word overlap"""
best_match_id = None
best_overlap = 0
retrieved_words = set(retrieved_content.lower().split())
for doc_id, doc_content in self.dataset["documents"].items():
doc_words = set(doc_content.lower().split())
overlap = len(retrieved_words & doc_words)
if overlap > best_overlap and overlap >= min_overlap:
best_overlap = overlap
best_match_id = doc_id
return best_match_id
def _safe_average(self, values: List[float]) -> float:
"""Calculate average safely handling empty lists"""
return sum(values) / len(values) if values else 0.0
def evaluate(self, k_values: List[int] = [1, 3, 5, 10]) -> Dict:
"""
Simplified evaluation with only MRR and hit rates
This method checks if the source document (where the question was generated from)
is retrieved among the top-k results.
Args:
k_values: List of k values to evaluate
Returns:
Dictionary with MRR and hit rate results
"""
print(f"\n🔍 Running simplified evaluation (MRR and Hit Rates only)...")
print(f" 📊 K values: {k_values}")
print(f" 📚 Total queries: {len(self.dataset['queries'])}")
# Initialize results
hit_rates = {k: [] for k in k_values}
rr_scores = [] # Reciprocal Rank scores for MRR calculation
query_results = {}
failed_queries = []
# Process each query
for query_id, query_text in tqdm(
self.dataset["queries"].items(), desc="Evaluating queries"
):
try:
# Get source document from metadata - handle both single-turn and multi-turn formats
source_chunk_id = None
# Try question_metadata first (single-turn format)
question_meta = self.dataset.get("question_metadata", {}).get(
query_id, {}
)
if question_meta:
source_chunk_id = question_meta.get("source_chunk")
# If not found, try conversation_metadata (multi-turn format)
if not source_chunk_id:
conversation_meta = self.dataset.get(
"conversation_metadata", {}
).get(query_id, {})
if conversation_meta:
source_chunk_id = conversation_meta.get("source_chunk")
if not source_chunk_id:
print(f"⚠️ No source chunk info for query {query_id}")
continue
# Get retrieval results
retrieved_docs = self.knowledge_base.search(
query_text, top_k=max(k_values)
)
retrieved_doc_ids = self._match_retrieved_documents(retrieved_docs)
# Check if source document is in top-k for each k
query_results[query_id] = {
"query": query_text,
"source_chunk": source_chunk_id,
"retrieved": retrieved_doc_ids,
"hit_rates": {},
}
# Calculate Reciprocal Rank (MRR) - once per query
if source_chunk_id in retrieved_doc_ids:
source_rank = (
retrieved_doc_ids.index(source_chunk_id) + 1
) # 1-indexed rank
rr_score = 1.0 / source_rank
else:
rr_score = 0.0
query_results[query_id]["rr"] = rr_score
query_results[query_id]["source_rank"] = (
source_rank if rr_score > 0 else None
)
rr_scores.append(rr_score)
for k in k_values:
top_k_docs = retrieved_doc_ids[:k]
hit = 1 if source_chunk_id in top_k_docs else 0
hit_rates[k].append(hit)
query_results[query_id]["hit_rates"][k] = hit
except Exception as e:
print(f"❌ Error evaluating query {query_id}: {e}")
failed_queries.append((query_id, str(e)))
continue
# Calculate average metrics
avg_hit_rates = {}
avg_rr = sum(rr_scores) / len(rr_scores) if rr_scores else 0.0
for k in k_values:
avg_hit_rates[k] = self._safe_average(hit_rates[k])
results = {
"hit_rates": avg_hit_rates,
"mrr": avg_rr,
"per_query_results": query_results,
"failed_queries": failed_queries,
"summary": {
"total_queries": len(self.dataset["queries"]),
"evaluated_queries": len(query_results),
"failed_queries": len(failed_queries),
"success_rate": len(query_results) / len(self.dataset["queries"]) * 100,
"k_values": k_values,
"evaluation_type": "mrr_hit_rates_only",
"evaluation_timestamp": time.time(),
},
}
return results
def print_evaluation_results(self, results: Dict):
"""Print simplified evaluation results"""
print(f"\n📊 SIMPLIFIED EVALUATION RESULTS (MRR + Hit Rates)")
print("=" * 60)
print(f"\n📈 Hit Rates (Source Document Found in Top-K):")
print(f"{'K':<5} {'Hit Rate':<12} {'Percentage':<12}")
print("-" * 30)
for k in sorted(results["hit_rates"].keys()):
hit_rate = results["hit_rates"][k]
percentage = hit_rate * 100
print(f"{k:<5} {hit_rate:<12.4f} {percentage:<12.1f}%")
# Display MRR separately since it's not k-dependent
mrr = results["mrr"]
print(f"\n📊 Mean Reciprocal Rank (MRR): {mrr:.4f}")
print(f" • MRR measures the average reciprocal rank of the source document")
print(f" • Higher is better (max = 1.0 if all sources are rank 1)")
print(f"\n📊 Hit Rate Summary:")
for k in sorted(results["hit_rates"].keys()):
hit_rate = results["hit_rates"][k]
percentage = hit_rate * 100
print(
f" • Top-{k}: {percentage:.1f}% of questions find their source document"
)
# Summary stats
summary = results["summary"]
print(f"\n📋 Evaluation Summary:")
print(f" • Total queries: {summary['total_queries']}")
print(f" • Successfully evaluated: {summary['evaluated_queries']}")
print(f" • Failed queries: {summary['failed_queries']}")
print(f" • Success rate: {summary['success_rate']:.1f}%")
print(f" • Evaluation type: {summary['evaluation_type']}")
# Simple interpretation
avg_hit_rate_5 = results["hit_rates"].get(5, 0)
mrr = results["mrr"]
print(f"\n🎯 Quick Interpretation:")
if avg_hit_rate_5 > 0.8:
print(
f" ✅ Excellent: {avg_hit_rate_5*100:.1f}% hit rate@5, MRR = {mrr:.3f}"
)
elif avg_hit_rate_5 > 0.6:
print(f" 👍 Good: {avg_hit_rate_5*100:.1f}% hit rate@5, MRR = {mrr:.3f}")
elif avg_hit_rate_5 > 0.4:
print(f" ⚠️ Fair: {avg_hit_rate_5*100:.1f}% hit rate@5, MRR = {mrr:.3f}")
else:
print(f" ❌ Poor: {avg_hit_rate_5*100:.1f}% hit rate@5, MRR = {mrr:.3f}")
def main():
"""Main function with argument parsing for separate operations"""
parser = argparse.ArgumentParser(
description="ViettelPay Retrieval Evaluation Dataset Creator (Simplified)"
)
parser.add_argument(
"--mode",
choices=["create", "evaluate", "both"],
default="both",
help="Mode: create dataset, evaluate only, or both",
)
parser.add_argument(
"--dataset-path",
default="evaluation_data/datasets/single_turn_retrieval/viettelpay_complete_eval.json",
help="Path to dataset file",
)
parser.add_argument(
"--results-path",
default="evaluation_data/results/single_turn_retrieval/viettelpay_eval_results.json",
help="Path to save evaluation results",
)
parser.add_argument(
"--questions-per-chunk",
type=int,
default=3,
help="Number of questions per chunk",
)
parser.add_argument(
"--k-values",
nargs="+",
type=int,
default=[1, 3, 5, 10],
help="K values for evaluation",
)
parser.add_argument(
"--quality-check",
action="store_true",
help="Enable quality checking for chunks",
)
parser.add_argument(
"--knowledge-base-path",
default="./knowledge_base",
help="Path to knowledge base",
)
args = parser.parse_args()
# Configuration
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
print("❌ Please set GEMINI_API_KEY environment variable")
return
try:
# Initialize knowledge base
print("🔧 Initializing ViettelPay knowledge base...")
kb = ViettelKnowledgeBase()
if not kb.load_knowledge_base(args.knowledge_base_path):
print(
"❌ Failed to load knowledge base. Please run build_database_script.py first."
)
return
# Create dataset if requested
if args.mode in ["create", "both"]:
print(f"\n🎯 Creating synthetic evaluation dataset...")
creator = SingleTurnDatasetCreator(GEMINI_API_KEY, kb)
dataset = creator.create_complete_dataset(
questions_per_chunk=args.questions_per_chunk,
save_path=args.dataset_path,
quality_check=args.quality_check,
)
# Evaluate if requested
if args.mode in ["evaluate", "both"]:
print(f"\n⚡ Evaluating retrieval performance...")
# Load dataset if not created in this run
if args.mode == "evaluate":
if not os.path.exists(args.dataset_path):
print(f"❌ Dataset file not found: {args.dataset_path}")
return
creator = SingleTurnDatasetCreator(GEMINI_API_KEY, kb)
dataset = creator.load_dataset(args.dataset_path)
# Run evaluation
evaluator = SingleTurnRetrievalEvaluator(dataset, kb)
results = evaluator.evaluate(k_values=args.k_values)
evaluator.print_evaluation_results(results)
# Save results
if args.results_path:
with open(args.results_path, "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print(f"\n💾 Results saved to: {args.results_path}")
print(f"\n✅ Operation completed successfully!")
print(f"\n💡 Next steps:")
print(f" 1. Review the MRR and hit rate results")
print(f" 2. Identify queries with low performance")
print(f" 3. Optimize your retrieval system")
print(f" 4. Re-run evaluation to measure progress")
except Exception as e:
print(f"❌ Error in main execution: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|