Spaces:
Running
Running
File size: 31,809 Bytes
60d1d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 |
"""
Multi-Turn Conversation Retrieval Evaluation for ViettelPay RAG System
Generates multi-turn conversations and evaluates retrieval performance
"""
import json
import os
import sys
import argparse
import time
from typing import Dict, List, Tuple, Optional, Union
from pathlib import Path
from collections import defaultdict
import pandas as pd
from tqdm import tqdm
import re
# Load environment variables from .env file
from dotenv import load_dotenv
load_dotenv()
# Add the project root to Python path so we can import from src
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))
# Import existing components
from src.evaluation.prompts import MULTI_TURN_CONVERSATION_GENERATION_PROMPT
from src.knowledge_base.viettel_knowledge_base import ViettelKnowledgeBase
from src.evaluation.single_turn_retrieval import SingleTurnRetrievalEvaluator
from src.llm.llm_client import LLMClientFactory, BaseLLMClient
from src.agent.nodes import query_enhancement_node, ViettelPayState
from langchain_core.messages import HumanMessage
class MultiTurnDatasetCreator:
"""Multi-turn conversation dataset creator for ViettelPay evaluation"""
def __init__(
self, gemini_api_key: str, knowledge_base: ViettelKnowledgeBase = None
):
"""
Initialize with Gemini API key and optional knowledge base
Args:
gemini_api_key: Google AI API key for Gemini
knowledge_base: Pre-initialized ViettelKnowledgeBase instance
"""
self.llm_client = LLMClientFactory.create_client(
"gemini", api_key=gemini_api_key, model="gemini-2.0-flash"
)
self.knowledge_base = knowledge_base
self.dataset = {
"conversations": {},
"documents": {},
"metadata": {
"total_chunks_processed": 0,
"conversations_generated": 0,
"creation_timestamp": time.time(),
},
}
print("β
MultiTurnDatasetCreator initialized with Gemini 2.0 Flash")
def generate_json_response(
self, prompt: str, max_retries: int = 3
) -> Optional[Dict]:
"""
Generate response and parse as JSON with retries
Args:
prompt: Input prompt
max_retries: Maximum number of retry attempts
Returns:
Parsed JSON response or None if failed
"""
for attempt in range(max_retries):
try:
response = self.llm_client.generate(prompt, temperature=0.1)
if response:
# Clean response text
response_text = response.strip()
# Extract JSON from response (handle cases with extra text)
json_match = re.search(r"\{.*\}", response_text, re.DOTALL)
if json_match:
json_text = json_match.group()
return json.loads(json_text)
else:
# Try parsing the whole response
return json.loads(response_text)
except json.JSONDecodeError as e:
print(f"β οΈ JSON parsing error (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
print(f"β Failed to parse JSON after {max_retries} attempts")
print(
f"Raw response: {response if 'response' in locals() else 'No response'}"
)
except Exception as e:
print(f"β οΈ API error (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(2**attempt) # Exponential backoff
return None
def get_all_chunks(self) -> List[Dict]:
"""
Get ALL chunks directly from ChromaDB vectorstore
Reuse the same method from single-turn evaluation
Returns:
List of all document chunks with content and metadata
"""
print(f"π Retrieving ALL chunks directly from ChromaDB vectorstore...")
if not self.knowledge_base:
raise ValueError(
"Knowledge base not provided. Please initialize with a ViettelKnowledgeBase instance."
)
try:
# Access the ChromaDB vectorstore directly
if (
not hasattr(self.knowledge_base, "chroma_retriever")
or not self.knowledge_base.chroma_retriever
):
raise ValueError("ChromaDB retriever not found in knowledge base")
# Get the vectorstore from the retriever
vectorstore = self.knowledge_base.chroma_retriever.vectorstore
# Get all documents directly from ChromaDB
print(" Accessing ChromaDB collection...")
all_docs = vectorstore.get(include=["documents", "metadatas"])
documents = all_docs["documents"]
metadatas = all_docs["metadatas"]
print(f" Found {len(documents)} documents in ChromaDB")
# Convert to our expected format
all_chunks = []
seen_content_hashes = set()
for i, (content, metadata) in enumerate(zip(documents, metadatas)):
# Create content hash for deduplication
content_hash = hash(content[:300])
if (
content_hash not in seen_content_hashes
and len(content.strip()) > 100
):
chunk_info = {
"id": f"chunk_{len(all_chunks)}",
"content": content,
"metadata": metadata or {},
"source": "chromadb_direct",
"content_length": len(content),
"original_index": i,
}
all_chunks.append(chunk_info)
seen_content_hashes.add(content_hash)
print(f"β
Retrieved {len(all_chunks)} unique chunks from ChromaDB")
# Sort by content length (longer chunks first)
all_chunks.sort(key=lambda x: x["content_length"], reverse=True)
return all_chunks
except Exception as e:
print(f"β Error accessing ChromaDB directly: {e}")
return []
def generate_conversations_for_chunk(
self, chunk: Dict, num_conversations: int = 2
) -> List[Dict]:
"""
Generate multi-turn conversations for a single chunk using Gemini
Args:
chunk: Chunk dictionary with content and metadata
num_conversations: Number of conversations to generate per chunk
Returns:
List of conversation dictionaries
"""
content = chunk["content"]
prompt = MULTI_TURN_CONVERSATION_GENERATION_PROMPT.format(
num_conversations=num_conversations, content=content
)
response_json = self.generate_json_response(prompt)
if response_json and "conversations" in response_json:
conversations = response_json["conversations"]
# Create conversation objects with metadata
conversation_objects = []
for i, conversation in enumerate(conversations):
if len(conversation.get("turns", [])) >= 2: # At least 2 turns
conversation_obj = {
"id": f"conv_{chunk['id']}_{i}",
"turns": conversation["turns"],
"conversation_type": conversation.get("type", "general"),
"source_chunk": chunk["id"],
"chunk_metadata": chunk["metadata"],
"generation_method": "gemini_json",
}
conversation_objects.append(conversation_obj)
return conversation_objects
else:
print(f"β οΈ No valid conversations generated for chunk {chunk['id']}")
return []
def create_multi_turn_dataset(
self,
conversations_per_chunk: int = 2,
save_path: str = "evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_conversations.json",
) -> Dict:
"""
Create multi-turn conversation dataset using ALL chunks
Args:
conversations_per_chunk: Number of conversations to generate per chunk
save_path: Path to save the dataset JSON file
Returns:
Complete dataset dictionary with conversations
"""
print(f"\nπ Creating multi-turn conversation dataset...")
print(f" Target: Process ALL chunks from knowledge base")
print(f" Conversations per chunk: {conversations_per_chunk}")
# Step 1: Get all chunks
all_chunks = self.get_all_chunks()
total_chunks = len(all_chunks)
if total_chunks == 0:
raise ValueError("No chunks found in knowledge base!")
print(f"β
Found {total_chunks} chunks to process")
# Step 2: Generate conversations for all chunks
print(f"\n㪠Generating conversations for {total_chunks} chunks...")
all_conversations = []
for chunk in tqdm(all_chunks, desc="Generating conversations"):
conversations = self.generate_conversations_for_chunk(
chunk, conversations_per_chunk
)
all_conversations.extend(conversations)
time.sleep(0.2) # Rate limiting for Gemini API
# Step 3: Populate dataset structure
self.dataset["documents"] = {
chunk["id"]: chunk["content"] for chunk in all_chunks
}
self.dataset["conversations"] = {
conv["id"]: {
"turns": conv["turns"],
"conversation_type": conv["conversation_type"],
"source_chunk": conv["source_chunk"],
"chunk_metadata": conv["chunk_metadata"],
"generation_method": conv["generation_method"],
}
for conv in all_conversations
}
# Step 4: Update metadata
self.dataset["metadata"].update(
{
"total_chunks_processed": total_chunks,
"conversations_generated": len(all_conversations),
"conversations_per_chunk": conversations_per_chunk,
"completion_timestamp": time.time(),
}
)
# Step 5: Save dataset
os.makedirs(
os.path.dirname(save_path) if os.path.dirname(save_path) else ".",
exist_ok=True,
)
with open(save_path, "w", encoding="utf-8") as f:
json.dump(self.dataset, f, ensure_ascii=False, indent=2)
print(f"\nβ
Multi-turn conversation dataset created successfully!")
print(f" π Saved to: {save_path}")
print(f" π Statistics:")
print(f" β’ Chunks processed: {total_chunks}")
print(f" β’ Conversations generated: {len(all_conversations)}")
print(
f" β’ Avg conversations per chunk: {len(all_conversations)/total_chunks:.1f}"
)
return self.dataset
class ConversationEnhancer:
"""Convert multi-turn conversations to enhanced queries using existing query enhancement"""
def __init__(self, gemini_api_key: str):
"""Initialize with Gemini API key for query enhancement"""
self.llm_client = LLMClientFactory.create_client(
"gemini", api_key=gemini_api_key, model="gemini-2.0-flash-lite"
)
print("β
ConversationEnhancer initialized")
def enhance_conversation(self, conversation_turns: List[Dict]) -> str:
"""
Convert a multi-turn conversation to an enhanced query
Args:
conversation_turns: List of turn dictionaries with role and content
Returns:
Enhanced query string
"""
try:
# Create messages in the format expected by query_enhancement_node
messages = []
for turn in conversation_turns:
if turn["role"] == "user":
messages.append(HumanMessage(content=turn["content"]))
# Create a mock state for the query enhancement node
state = ViettelPayState(messages=messages)
# Use the existing query enhancement node
enhanced_state = query_enhancement_node(state, self.llm_client)
enhanced_query = enhanced_state.get("enhanced_query", "")
if not enhanced_query:
# Fallback: concatenate all user messages
user_messages = [
turn["content"]
for turn in conversation_turns
if turn["role"] == "user"
]
enhanced_query = " ".join(user_messages)
return enhanced_query
except Exception as e:
print(f"β Error enhancing conversation: {e}")
# Fallback: concatenate all user messages
user_messages = [
turn["content"] for turn in conversation_turns if turn["role"] == "user"
]
return " ".join(user_messages)
def convert_dataset_to_single_turn_format(
self,
multi_turn_dataset: Dict,
save_path: str = "evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_enhanced.json",
) -> Dict:
"""
Convert multi-turn conversation dataset to single-turn format with enhanced queries
Args:
multi_turn_dataset: Multi-turn conversation dataset
save_path: Path to save the converted dataset
Returns:
Single-turn format dataset
"""
print(f"\nπ Converting multi-turn conversations to enhanced queries...")
conversations = multi_turn_dataset["conversations"]
documents = multi_turn_dataset["documents"]
# Initialize single-turn format dataset
single_turn_dataset = {
"queries": {},
"documents": documents,
"conversation_metadata": {},
"metadata": {
"total_conversations_processed": len(conversations),
"enhanced_queries_generated": 0,
"conversion_timestamp": time.time(),
"original_dataset_metadata": multi_turn_dataset.get("metadata", {}),
},
}
enhanced_count = 0
# Process each conversation
for conv_id, conv_data in tqdm(
conversations.items(), desc="Enhancing conversations"
):
try:
# Extract turns
turns = conv_data["turns"]
# Enhance conversation to single query
enhanced_query = self.enhance_conversation(turns)
if enhanced_query and len(enhanced_query.strip()) > 5:
single_turn_dataset["queries"][conv_id] = enhanced_query
single_turn_dataset["conversation_metadata"][conv_id] = {
"original_conversation": turns,
"conversation_type": conv_data.get(
"conversation_type", "general"
),
"source_chunk": conv_data["source_chunk"],
"chunk_metadata": conv_data.get("chunk_metadata", {}),
"generation_method": conv_data.get(
"generation_method", "unknown"
),
}
enhanced_count += 1
time.sleep(0.1) # Small delay for rate limiting
except Exception as e:
print(f"β οΈ Error processing conversation {conv_id}: {e}")
continue
# Update metadata
single_turn_dataset["metadata"]["enhanced_queries_generated"] = enhanced_count
# Save converted dataset
os.makedirs(
os.path.dirname(save_path) if os.path.dirname(save_path) else ".",
exist_ok=True,
)
with open(save_path, "w", encoding="utf-8") as f:
json.dump(single_turn_dataset, f, ensure_ascii=False, indent=2)
print(f"β
Conversion completed successfully!")
print(f" π Saved to: {save_path}")
print(f" π Statistics:")
print(f" β’ Conversations processed: {len(conversations)}")
print(f" β’ Enhanced queries generated: {enhanced_count}")
print(f" β’ Success rate: {enhanced_count/len(conversations)*100:.1f}%")
return single_turn_dataset
class MultiTurnEvaluator:
"""Extended evaluator for multi-turn conversation retrieval with additional analysis"""
def __init__(self, dataset: Dict, knowledge_base: ViettelKnowledgeBase):
"""
Initialize evaluator with dataset and knowledge base
Args:
dataset: Evaluation dataset in single-turn format (from converted multi-turn)
knowledge_base: ViettelKnowledgeBase instance to evaluate
"""
self.dataset = dataset
self.knowledge_base = knowledge_base
self.single_turn_evaluator = SingleTurnRetrievalEvaluator(
dataset, knowledge_base
)
def _get_conversation_metadata(self, query_id: str) -> Dict:
"""
Get conversation metadata for a query, handling both formats
Args:
query_id: Query identifier
Returns:
Metadata dictionary
"""
# First try conversation_metadata (multi-turn format)
conversation_metadata = self.dataset.get("conversation_metadata", {})
if query_id in conversation_metadata:
return conversation_metadata[query_id]
# Fallback to question_metadata (single-turn format)
question_metadata = self.dataset.get("question_metadata", {})
if query_id in question_metadata:
# Convert single-turn format to multi-turn format for consistency
meta = question_metadata[query_id]
return {
"conversation_type": "single_turn",
"source_chunk": meta.get("source_chunk"),
"original_conversation": [
{"role": "user", "content": self.dataset["queries"][query_id]}
],
"chunk_metadata": meta.get("chunk_metadata", {}),
"generation_method": meta.get("generation_method", "unknown"),
}
return {}
def evaluate_multi_turn_performance(
self, k_values: List[int] = [1, 3, 5, 10]
) -> Dict:
"""
Evaluate multi-turn conversation retrieval performance
Args:
k_values: List of k values to evaluate
Returns:
Dictionary with evaluation results and multi-turn specific analysis
"""
print(f"\nπ Running multi-turn conversation evaluation...")
# Step 1: Run standard single-turn evaluation
base_results = self.single_turn_evaluator.evaluate(k_values)
# Step 2: Add multi-turn specific analysis
# Analyze by conversation type
results_by_type = defaultdict(
lambda: {"hit_rates": {k: [] for k in k_values}, "rr_scores": []}
)
for query_id, query_result in base_results["per_query_results"].items():
conv_meta = self._get_conversation_metadata(query_id)
conv_type = conv_meta.get("conversation_type", "unknown")
# Add to type-specific results
results_by_type[conv_type]["rr_scores"].append(query_result.get("rr", 0))
for k in k_values:
hit_rate = query_result.get("hit_rates", {}).get(k, 0)
results_by_type[conv_type]["hit_rates"][k].append(hit_rate)
# Calculate averages by conversation type
type_analysis = {}
for conv_type, type_results in results_by_type.items():
type_analysis[conv_type] = {
"hit_rates": {
k: sum(hits) / len(hits) if hits else 0
for k, hits in type_results["hit_rates"].items()
},
"mrr": (
sum(type_results["rr_scores"]) / len(type_results["rr_scores"])
if type_results["rr_scores"]
else 0
),
"total_conversations": len(type_results["rr_scores"]),
}
# Analyze conversation length impact
turn_length_analysis = self._analyze_by_conversation_length(
base_results, k_values
)
# Combine results
multi_turn_results = {
**base_results, # Include all base results
"conversation_type_analysis": type_analysis,
"turn_length_analysis": turn_length_analysis,
"multi_turn_metadata": {
"evaluation_type": "multi_turn_conversation",
"conversation_types": list(type_analysis.keys()),
"total_conversation_types": len(type_analysis),
},
}
return multi_turn_results
def _analyze_by_conversation_length(
self, base_results: Dict, k_values: List[int]
) -> Dict:
"""Analyze performance by conversation turn length"""
length_analysis = defaultdict(
lambda: {"hit_rates": {k: [] for k in k_values}, "rr_scores": []}
)
for query_id, query_result in base_results["per_query_results"].items():
conv_meta = self._get_conversation_metadata(query_id)
original_conv = conv_meta.get("original_conversation", [])
turn_count = len(
[turn for turn in original_conv if turn.get("role") == "user"]
)
# Categorize by turn length
if turn_count == 1:
length_category = "1_turn" # Single-turn questions
elif turn_count == 2:
length_category = "2_turns"
elif turn_count == 3:
length_category = "3_turns"
elif turn_count >= 4:
length_category = "4+_turns"
else:
length_category = "unknown_turns"
# Add to length-specific results
length_analysis[length_category]["rr_scores"].append(
query_result.get("rr", 0)
)
for k in k_values:
hit_rate = query_result.get("hit_rates", {}).get(k, 0)
length_analysis[length_category]["hit_rates"][k].append(hit_rate)
# Calculate averages by turn length
final_length_analysis = {}
for length_cat, length_results in length_analysis.items():
final_length_analysis[length_cat] = {
"hit_rates": {
k: sum(hits) / len(hits) if hits else 0
for k, hits in length_results["hit_rates"].items()
},
"mrr": (
sum(length_results["rr_scores"]) / len(length_results["rr_scores"])
if length_results["rr_scores"]
else 0
),
"total_conversations": len(length_results["rr_scores"]),
}
return final_length_analysis
def print_multi_turn_results(self, results: Dict):
"""Print multi-turn evaluation results with additional analysis"""
# Print base results first
self.single_turn_evaluator.print_evaluation_results(results)
# Print multi-turn specific analysis
print(f"\nπ MULTI-TURN SPECIFIC ANALYSIS")
print("=" * 60)
# Conversation type analysis
type_analysis = results.get("conversation_type_analysis", {})
if type_analysis:
print(f"\nπ Performance by Conversation Type:")
print(f"{'Type':<20} {'MRR':<8} {'Hit@5':<8} {'Count':<8}")
print("-" * 50)
for conv_type, analysis in type_analysis.items():
mrr = analysis["mrr"]
hit_at_5 = analysis["hit_rates"].get(5, 0) * 100
count = analysis["total_conversations"]
print(f"{conv_type:<20} {mrr:<8.3f} {hit_at_5:<8.1f}% {count:<8}")
# Turn length analysis
length_analysis = results.get("turn_length_analysis", {})
if length_analysis:
print(f"\nπ Performance by Conversation Length:")
print(f"{'Length':<12} {'MRR':<8} {'Hit@5':<8} {'Count':<8}")
print("-" * 40)
for length_cat, analysis in length_analysis.items():
mrr = analysis["mrr"]
hit_at_5 = analysis["hit_rates"].get(5, 0) * 100
count = analysis["total_conversations"]
print(f"{length_cat:<12} {mrr:<8.3f} {hit_at_5:<8.1f}% {count:<8}")
print(f"\nπ‘ Multi-Turn Insights:")
# Best performing conversation type
if type_analysis:
best_type = max(type_analysis.keys(), key=lambda k: type_analysis[k]["mrr"])
worst_type = min(
type_analysis.keys(), key=lambda k: type_analysis[k]["mrr"]
)
print(
f" β’ Best conversation type: {best_type} (MRR: {type_analysis[best_type]['mrr']:.3f})"
)
print(
f" β’ Worst conversation type: {worst_type} (MRR: {type_analysis[worst_type]['mrr']:.3f})"
)
# Turn length insights
if length_analysis:
best_length = max(
length_analysis.keys(), key=lambda k: length_analysis[k]["mrr"]
)
print(
f" β’ Best performing length: {best_length} (MRR: {length_analysis[best_length]['mrr']:.3f})"
)
def main():
"""Main function for multi-turn conversation evaluation"""
parser = argparse.ArgumentParser(
description="ViettelPay Multi-Turn Conversation Retrieval Evaluation"
)
parser.add_argument(
"--mode",
choices=["create", "enhance", "evaluate", "full"],
default="full",
help="Mode: create conversations, enhance to queries, evaluate, or full pipeline",
)
parser.add_argument(
"--conversations-dataset",
default="evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_conversations.json",
help="Path to multi-turn conversations dataset",
)
parser.add_argument(
"--enhanced-dataset",
default="evaluation_data/datasets/multi_turn_retrieval/viettelpay_multiturn_enhanced.json",
help="Path to enhanced queries dataset",
)
parser.add_argument(
"--results-path",
default="evaluation_data/results/multi_turn_retrieval/viettelpay_multiturn_results.json",
help="Path to save evaluation results",
)
parser.add_argument(
"--conversations-per-chunk",
type=int,
default=3,
help="Number of conversations per chunk",
)
parser.add_argument(
"--k-values",
nargs="+",
type=int,
default=[1, 3, 5, 10],
help="K values for evaluation",
)
parser.add_argument(
"--knowledge-base-path",
default="./knowledge_base",
help="Path to knowledge base",
)
args = parser.parse_args()
# Configuration
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
print("β Please set GEMINI_API_KEY environment variable")
return
try:
# Initialize knowledge base
print("π§ Initializing ViettelPay knowledge base...")
kb = ViettelKnowledgeBase()
if not kb.load_knowledge_base(args.knowledge_base_path):
print(
"β Failed to load knowledge base. Please run build_database_script.py first."
)
return
# Step 1: Create multi-turn conversations if requested
if args.mode in ["create", "full"]:
print(f"\nπ― Creating multi-turn conversation dataset...")
creator = MultiTurnDatasetCreator(GEMINI_API_KEY, kb)
conversations_dataset = creator.create_multi_turn_dataset(
conversations_per_chunk=args.conversations_per_chunk,
save_path=args.conversations_dataset,
)
# Step 2: Enhance conversations to queries if requested
if args.mode in ["enhance", "full"]:
print(f"\nβ‘ Converting conversations to enhanced queries...")
# Load conversations if not created in this run
if args.mode == "enhance":
if not os.path.exists(args.conversations_dataset):
print(
f"β Conversations dataset not found: {args.conversations_dataset}"
)
return
with open(args.conversations_dataset, "r", encoding="utf-8") as f:
conversations_dataset = json.load(f)
# Enhance conversations
enhancer = ConversationEnhancer(GEMINI_API_KEY)
enhanced_dataset = enhancer.convert_dataset_to_single_turn_format(
conversations_dataset, args.enhanced_dataset
)
# Step 3: Evaluate if requested
if args.mode in ["evaluate", "full"]:
print(f"\nπ Evaluating multi-turn conversation retrieval...")
# Load enhanced dataset if not created in this run
if args.mode == "evaluate":
if not os.path.exists(args.enhanced_dataset):
print(f"β Enhanced dataset not found: {args.enhanced_dataset}")
return
with open(args.enhanced_dataset, "r", encoding="utf-8") as f:
enhanced_dataset = json.load(f)
# Run evaluation
evaluator = MultiTurnEvaluator(enhanced_dataset, kb)
results = evaluator.evaluate_multi_turn_performance(k_values=args.k_values)
evaluator.print_multi_turn_results(results)
# Save results
if args.results_path:
with open(args.results_path, "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print(f"\nπΎ Results saved to: {args.results_path}")
print(f"\nβ
Multi-turn evaluation completed successfully!")
print(f"\nπ‘ Next steps:")
print(f" 1. Compare multi-turn vs single-turn performance")
print(f" 2. Analyze conversation types that work best")
print(f" 3. Optimize query enhancement for multi-turn scenarios")
except Exception as e:
print(f"β Error in main execution: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|