File size: 36,423 Bytes
60d1d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
"""
Simplified Intent Classification Evaluation for ViettelPay AI Agent
Removed pattern-based generation, improved chunk mixing, and configurable conversations per chunk
"""

import json
import os
import sys
import argparse
import time
import random
from typing import Dict, List, Optional
from pathlib import Path
from collections import defaultdict, Counter
import pandas as pd
from tqdm import tqdm
import re
import numpy as np

# Load environment variables from .env file
from dotenv import load_dotenv

load_dotenv()

# Add the project root to Python path so we can import from src
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))

# Import existing components
from src.evaluation.prompts import INTENT_CLASSIFICATION_CONVERSATION_GENERATION_PROMPT
from src.knowledge_base.viettel_knowledge_base import ViettelKnowledgeBase
from src.llm.llm_client import LLMClientFactory
from src.agent.nodes import classify_intent_node, ViettelPayState
from langchain_core.messages import HumanMessage


class IntentDatasetCreator:
    """Simplified intent classification dataset creator with two strategies"""

    def __init__(
        self, gemini_api_key: str, knowledge_base: ViettelKnowledgeBase = None
    ):
        """Initialize with Gemini API key and optional knowledge base"""
        self.llm_client = LLMClientFactory.create_client(
            "gemini", api_key=gemini_api_key, model="gemini-2.0-flash"
        )
        self.knowledge_base = knowledge_base
        self.dataset = {
            "conversations": {},
            "generation_methods": {},
            "intent_distribution": {},
            "metadata": {
                "total_conversations": 0,
                "total_user_messages": 0,
                "creation_timestamp": time.time(),
            },
        }

        print("βœ… IntentDatasetCreator initialized (simplified version)")

    def generate_json_response(
        self, prompt: str, max_retries: int = 3
    ) -> Optional[Dict]:
        """Generate response and parse as JSON with retries"""
        for attempt in range(max_retries):
            try:
                response = self.llm_client.generate(prompt, temperature=0.1)

                if response:
                    response_text = response.strip()
                    json_match = re.search(r"\{.*\}", response_text, re.DOTALL)
                    if json_match:
                        json_text = json_match.group()
                        return json.loads(json_text)
                    else:
                        return json.loads(response_text)

            except json.JSONDecodeError as e:
                print(f"⚠️ JSON parsing error (attempt {attempt + 1}): {e}")
                if attempt == max_retries - 1:
                    print(f"❌ Failed to parse JSON after {max_retries} attempts")

            except Exception as e:
                print(f"⚠️ API error (attempt {attempt + 1}): {e}")
                if attempt < max_retries - 1:
                    time.sleep(2**attempt)

        return None

    def get_all_chunks(self) -> List[Dict]:
        """Get ALL chunks from ChromaDB vectorstore"""
        print(f"πŸ“š Retrieving ALL chunks from ChromaDB vectorstore...")

        if not self.knowledge_base:
            raise ValueError("Knowledge base not provided.")

        try:
            if (
                not hasattr(self.knowledge_base, "chroma_retriever")
                or not self.knowledge_base.chroma_retriever
            ):
                raise ValueError("ChromaDB retriever not found in knowledge base")

            vectorstore = self.knowledge_base.chroma_retriever.vectorstore
            all_docs = vectorstore.get(include=["documents", "metadatas"])

            documents = all_docs["documents"]
            metadatas = all_docs["metadatas"]

            all_chunks = []
            seen_content_hashes = set()

            for i, (content, metadata) in enumerate(zip(documents, metadatas)):
                content_hash = hash(content[:300])

                if (
                    content_hash not in seen_content_hashes
                    and len(content.strip()) > 100
                ):
                    chunk_info = {
                        "id": f"chunk_{len(all_chunks)}",
                        "content": content,
                        "metadata": metadata or {},
                    }
                    all_chunks.append(chunk_info)
                    seen_content_hashes.add(content_hash)

            print(f"βœ… Retrieved {len(all_chunks)} unique chunks from ChromaDB")
            return all_chunks

        except Exception as e:
            print(f"❌ Error accessing ChromaDB: {e}")
            return []

    def generate_single_chunk_conversations(
        self, chunk: Dict, num_conversations: int = 3
    ) -> List[Dict]:
        """Generate conversations from single chunk"""
        content = chunk["content"]

        generation_instruction = "TαΊ‘o cuα»™c hα»™i thoαΊ‘i tαΊ­p trung vΓ o chα»§ đề chΓ­nh cα»§a tΓ i liệu. Bao gα»“m cαΊ£ cΓ‘c intent phα»• biαΊΏn nhΖ° greeting, unclear, human_request để tΔƒng tΓ­nh Δ‘a dαΊ‘ng"

        prompt = INTENT_CLASSIFICATION_CONVERSATION_GENERATION_PROMPT.format(
            num_conversations=num_conversations,
            content=content,
            generation_instruction=generation_instruction,
        )

        response_json = self.generate_json_response(prompt)

        if response_json and "conversations" in response_json:
            conversations = response_json["conversations"]
            valid_conversations = []

            for i, conversation in enumerate(conversations):
                if "turns" in conversation and len(conversation["turns"]) >= 1:
                    valid_turns = []
                    for turn in conversation["turns"]:
                        if "user" in turn and "intent" in turn:
                            valid_turns.append(turn)

                    if valid_turns:
                        conv_obj = {
                            "id": f"single_{chunk['id']}_{i}",
                            "turns": valid_turns,
                            "generation_method": "single_chunk",
                            "source_chunks": [chunk["id"]],
                            "chunk_metadata": [chunk["metadata"]],
                        }
                        valid_conversations.append(conv_obj)
            return valid_conversations
        else:
            print(f"⚠️ No valid conversations generated for chunk {chunk['id']}")
            return []

    def generate_multi_chunk_conversations(
        self, chunks: List[Dict], num_conversations: int = 3
    ) -> List[Dict]:
        """Generate conversations from multiple chunks (2-3 chunks)"""
        # Combine content from multiple chunks
        combined_content = ""
        for i, chunk in enumerate(chunks):
            combined_content += f"\n\n--- Chα»§ đề {i+1} ---\n" + chunk["content"]

        generation_instruction = f"TαΊ‘o cuα»™c hα»™i thoαΊ‘i tα»± nhiΓͺn kαΊΏt hợp {len(chunks)} chα»§ đề khΓ‘c nhau. Người dΓΉng cΓ³ thể chuyển tα»« chα»§ đề nΓ y sang chα»§ đề khΓ‘c. Đặc biệt bao gα»“m cΓ‘c intent nhΖ° greeting, unclear, human_request để cuα»™c hα»™i thoαΊ‘i thα»±c tαΊΏ hΖ‘n"

        prompt = INTENT_CLASSIFICATION_CONVERSATION_GENERATION_PROMPT.format(
            num_conversations=num_conversations,
            content=combined_content,
            generation_instruction=generation_instruction,
        )

        response_json = self.generate_json_response(prompt)

        if response_json and "conversations" in response_json:
            conversations = response_json["conversations"]
            valid_conversations = []

            for i, conversation in enumerate(conversations):
                if "turns" in conversation and len(conversation["turns"]) >= 1:
                    valid_turns = []
                    for turn in conversation["turns"]:
                        if "user" in turn and "intent" in turn:
                            valid_turns.append(turn)

                    if valid_turns:
                        conv_obj = {
                            "id": f"multi_{'-'.join([c['id'] for c in chunks])}_{i}",
                            "turns": valid_turns,
                            "generation_method": "multi_chunk",
                            "source_chunks": [c["id"] for c in chunks],
                            "chunk_metadata": [c["metadata"] for c in chunks],
                        }
                        valid_conversations.append(conv_obj)

            print(
                f"βœ… Generated {len(valid_conversations)} conversations for multi-chunk {[c['id'] for c in chunks]}"
            )
            return valid_conversations
        else:
            print(
                f"⚠️ No valid conversations generated for chunks {[c['id'] for c in chunks]}"
            )
            return []

    def create_intent_dataset(
        self,
        num_conversations_per_chunk: int = 3,
        save_path: str = "evaluation_data/datasets/intent_classification/viettelpay_intent_dataset.json",
    ) -> Dict:
        """Create intent classification dataset using two strategies only"""
        print(f"\nπŸš€ Creating intent classification dataset...")
        print(f"   Conversations per chunk: {num_conversations_per_chunk}")

        # Step 1: Get all chunks
        all_chunks = self.get_all_chunks()
        if not all_chunks:
            raise ValueError("No chunks found in knowledge base!")

        total_chunks = len(all_chunks)
        print(f"βœ… Using all {total_chunks} chunks and shuffle them")
        random.shuffle(all_chunks)

        # Step 2: Split chunks for two strategies (60% single, 40% multi)
        split_point = int(total_chunks * 0.6)
        single_chunks = all_chunks[:split_point]
        multi_chunks = all_chunks[split_point:]

        print(f"πŸ“Š Distribution plan:")
        print(
            f"   β€’ Single chunk: {len(single_chunks)} chunks β†’ ~{len(single_chunks) * num_conversations_per_chunk} conversations"
        )
        print(
            f"   β€’ Multi chunk: {len(multi_chunks)} chunks β†’ ~{len(multi_chunks) // 2.5 * num_conversations_per_chunk} conversations"
        )

        all_conversations = []

        # Step 3: Generate single-chunk conversations
        print(f"\nπŸ’¬ Generating single-chunk conversations...")
        for chunk in tqdm(single_chunks, desc="Single-chunk conversations"):
            conversations = self.generate_single_chunk_conversations(
                chunk, num_conversations_per_chunk
            )
            all_conversations.extend(conversations)
            time.sleep(0.1)

        # Step 4: Generate multi-chunk conversations (2-3 chunks randomly)
        print(f"\nπŸ”€ Generating multi-chunk conversations...")
        random.shuffle(multi_chunks)  # Randomize order

        i = 0
        while i < len(multi_chunks):
            # Randomly choose to use 2 or 3 chunks
            chunk_count = random.choice([2, 3])
            chunk_group = multi_chunks[i : i + chunk_count]

            # Only proceed if we have at least 2 chunks
            if len(chunk_group) >= 2:
                conversations = self.generate_multi_chunk_conversations(
                    chunk_group, num_conversations_per_chunk
                )
                all_conversations.extend(conversations)
                time.sleep(0.1)

            i += chunk_count

        # Step 5: Track generation methods and intent distribution
        method_stats = defaultdict(int)
        intent_counts = Counter()

        for conv in all_conversations:
            method_stats[conv["generation_method"]] += 1
            for turn in conv["turns"]:
                intent_counts[turn["intent"]] += 1

        # Step 6: Populate dataset structure
        self.dataset["conversations"] = {conv["id"]: conv for conv in all_conversations}

        self.dataset["generation_methods"] = dict(method_stats)
        self.dataset["intent_distribution"] = dict(intent_counts)

        # Step 7: Update metadata
        total_user_messages = sum(len(conv["turns"]) for conv in all_conversations)

        self.dataset["metadata"].update(
            {
                "total_conversations": len(all_conversations),
                "total_user_messages": total_user_messages,
                "chunks_used": total_chunks,
                "conversations_per_chunk": num_conversations_per_chunk,
                "generation_distribution": dict(method_stats),
                "completion_timestamp": time.time(),
            }
        )

        # Step 8: Save dataset
        os.makedirs(
            os.path.dirname(save_path) if os.path.dirname(save_path) else ".",
            exist_ok=True,
        )

        with open(save_path, "w", encoding="utf-8") as f:
            json.dump(self.dataset, f, ensure_ascii=False, indent=2)

        print(f"\nβœ… Intent classification dataset created successfully!")
        print(f"   πŸ“ Saved to: {save_path}")
        print(f"   πŸ“Š Statistics:")
        print(f"      β€’ Total conversations: {len(all_conversations)}")
        print(f"      β€’ Total user messages: {total_user_messages}")
        print(f"      β€’ Conversations per chunk: {num_conversations_per_chunk}")
        print(f"      β€’ Generation methods: {dict(method_stats)}")
        print(f"      β€’ Intent distribution: {dict(intent_counts)}")

        return self.dataset


class IntentClassificationEvaluator:
    """Evaluator for intent classification performance with method-specific analysis"""

    def __init__(self, dataset: Dict, llm_client):
        """Initialize evaluator with dataset and LLM client"""
        self.dataset = dataset
        self.llm_client = llm_client

        # Define expected intents
        self.expected_intents = [
            "greeting",
            "faq",
            "error_help",
            "procedure_guide",
            "human_request",
            "out_of_scope",
            "unclear",
        ]

        # Critical intents for business
        self.critical_intents = ["error_help", "human_request"]

        # Define flow mappings based on agent routing logic
        self.script_based_intents = {
            "greeting",
            "out_of_scope",
            "human_request",
            "unclear",
        }
        self.knowledge_based_intents = {
            "faq",
            "error_help",
            "procedure_guide",
        }

    def _get_intent_flow(self, intent: str) -> str:
        """Classify intent into flow type based on agent routing logic"""
        if intent in self.script_based_intents:
            return "script_based"
        elif intent in self.knowledge_based_intents:
            return "knowledge_based"
        else:
            return "unknown"

    def _make_json_serializable(self, obj):
        """Convert numpy types to native Python types for JSON serialization"""
        try:
            import numpy as np

            if isinstance(obj, dict):
                return {k: self._make_json_serializable(v) for k, v in obj.items()}
            elif isinstance(obj, list):
                return [self._make_json_serializable(item) for item in obj]
            elif isinstance(obj, np.integer):
                return int(obj)
            elif isinstance(obj, np.floating):
                return float(obj)
            elif isinstance(obj, np.ndarray):
                return obj.tolist()
            else:
                return obj
        except ImportError:
            # If numpy is not available, just return the object as-is
            if isinstance(obj, dict):
                return {k: self._make_json_serializable(v) for k, v in obj.items()}
            elif isinstance(obj, list):
                return [self._make_json_serializable(item) for item in obj]
            else:
                return obj

    def calculate_essential_metrics(
        self, ground_truth: List[str], predictions: List[str]
    ) -> Dict:
        """Calculate only essential metrics: accuracy, macro, per-class"""
        try:
            from sklearn.metrics import accuracy_score, precision_recall_fscore_support

            overall_accuracy = accuracy_score(ground_truth, predictions)

            # Calculate macro metrics (equal weight per intent)
            precision, recall, f1, support = precision_recall_fscore_support(
                ground_truth, predictions, average="macro", zero_division=0
            )

            macro_metrics = {
                "macro_precision": precision,
                "macro_recall": recall,
                "macro_f1": f1,
            }

            # Calculate per-class metrics
            precision_per_class, recall_per_class, f1_per_class, support_per_class = (
                precision_recall_fscore_support(
                    ground_truth, predictions, average=None, zero_division=0
                )
            )

            # Get unique labels
            unique_labels = sorted(list(set(ground_truth + predictions)))

            per_class_metrics = {}
            for i, label in enumerate(unique_labels):
                if i < len(precision_per_class):
                    per_class_metrics[label] = {
                        "precision": float(precision_per_class[i]),
                        "recall": float(recall_per_class[i]),
                        "f1": float(f1_per_class[i]),
                        "support": int(
                            support_per_class[i] if i < len(support_per_class) else 0
                        ),
                    }

            # Calculate critical intent recall
            critical_recall = {}
            for intent in self.critical_intents:
                if intent in per_class_metrics:
                    critical_recall[intent] = per_class_metrics[intent]["recall"]

            return {
                "overall_accuracy": float(overall_accuracy),
                "macro_precision": float(macro_metrics["macro_precision"]),
                "macro_recall": float(macro_metrics["macro_recall"]),
                "macro_f1": float(macro_metrics["macro_f1"]),
                "per_class_metrics": per_class_metrics,
                "critical_intent_recall": {
                    k: float(v) for k, v in critical_recall.items()
                },
            }

        except ImportError:
            print("⚠️ scikit-learn not installed. Using basic accuracy only.")
            overall_accuracy = sum(
                1 for gt, pred in zip(ground_truth, predictions) if gt == pred
            ) / len(predictions)

            return {"overall_accuracy": float(overall_accuracy)}

    def evaluate_intent_classification(self) -> Dict:
        """Evaluate intent classification performance with method and flow breakdown"""
        print(f"\n🎯 Running intent classification evaluation...")

        conversations = self.dataset["conversations"]

        # Initialize tracking
        all_predictions = []
        all_ground_truth = []
        method_results = defaultdict(lambda: {"predictions": [], "ground_truth": []})
        flow_results = defaultdict(lambda: {"predictions": [], "ground_truth": []})
        conversation_results = {}

        # Process each conversation
        for conv_id, conv_data in tqdm(
            conversations.items(), desc="Evaluating conversations"
        ):
            generation_method = conv_data.get("generation_method", "unknown")

            conversation_results[conv_id] = {
                "turns": [],
                "accuracy": 0,
                "generation_method": generation_method,
            }

            correct_predictions = 0
            total_turns = len(conv_data["turns"])

            # Process each turn in the conversation
            for turn_idx, turn in enumerate(conv_data["turns"]):
                user_message = turn["user"]
                ground_truth_intent = turn["intent"]

                try:
                    # Create messages in the format expected by classify_intent_node
                    messages = [HumanMessage(content=user_message)]

                    # Create a mock state for the intent classification node
                    state = ViettelPayState(messages=messages)

                    # Use the classify_intent_node directly
                    result_state = classify_intent_node(state, self.llm_client)
                    predicted_intent = result_state.get("intent", "unclear")

                    # Track results
                    is_correct = predicted_intent == ground_truth_intent
                    if is_correct:
                        correct_predictions += 1

                    # Add to overall tracking
                    all_predictions.append(predicted_intent)
                    all_ground_truth.append(ground_truth_intent)

                    # Add to method-specific tracking
                    method_results[generation_method]["predictions"].append(
                        predicted_intent
                    )
                    method_results[generation_method]["ground_truth"].append(
                        ground_truth_intent
                    )

                    # Add to flow-specific tracking
                    ground_truth_flow = self._get_intent_flow(ground_truth_intent)
                    predicted_flow = self._get_intent_flow(predicted_intent)

                    flow_results[ground_truth_flow]["predictions"].append(
                        predicted_intent
                    )
                    flow_results[ground_truth_flow]["ground_truth"].append(
                        ground_truth_intent
                    )

                    conversation_results[conv_id]["turns"].append(
                        {
                            "turn": turn_idx + 1,
                            "user_message": user_message,
                            "ground_truth": ground_truth_intent,
                            "predicted": predicted_intent,
                            "correct": is_correct,
                        }
                    )

                except Exception as e:
                    print(f"⚠️ Error processing turn {turn_idx} in {conv_id}: {e}")
                    # Use "unclear" as fallback prediction
                    all_predictions.append("unclear")
                    all_ground_truth.append(ground_truth_intent)
                    method_results[generation_method]["predictions"].append("unclear")
                    method_results[generation_method]["ground_truth"].append(
                        ground_truth_intent
                    )

                    # Add to flow-specific tracking (for errors)
                    ground_truth_flow = self._get_intent_flow(ground_truth_intent)
                    flow_results[ground_truth_flow]["predictions"].append("unclear")
                    flow_results[ground_truth_flow]["ground_truth"].append(
                        ground_truth_intent
                    )

            # Calculate conversation accuracy
            conversation_results[conv_id]["accuracy"] = float(
                correct_predictions / total_turns if total_turns > 0 else 0
            )

        # Calculate overall metrics
        overall_metrics = self.calculate_essential_metrics(
            all_ground_truth, all_predictions
        )

        # Calculate method-specific metrics
        method_metrics = {}
        for method, method_data in method_results.items():
            if method_data["predictions"]:  # Ensure we have data
                method_metrics[method] = self.calculate_essential_metrics(
                    method_data["ground_truth"], method_data["predictions"]
                )
                method_metrics[method]["total_messages"] = len(
                    method_data["predictions"]
                )

        # Calculate flow-specific metrics
        flow_metrics = {}
        for flow, flow_data in flow_results.items():
            if flow_data["predictions"]:  # Ensure we have data
                flow_metrics[flow] = self.calculate_essential_metrics(
                    flow_data["ground_truth"], flow_data["predictions"]
                )
                flow_metrics[flow]["total_messages"] = len(flow_data["predictions"])

        results = {
            "overall_metrics": overall_metrics,
            "method_specific_metrics": method_metrics,
            "flow_specific_metrics": flow_metrics,
            "conversation_results": conversation_results,
            "intent_distribution": {
                "ground_truth": dict(Counter(all_ground_truth)),
                "predicted": dict(Counter(all_predictions)),
            },
            "generation_methods": self.dataset.get("generation_methods", {}),
        }

        # Make sure all values are JSON serializable
        results = self._make_json_serializable(results)

        return results

    def print_evaluation_results(self, results: Dict):
        """Print comprehensive evaluation results"""
        print(f"\n🎯 INTENT CLASSIFICATION EVALUATION RESULTS")
        print("=" * 60)

        # Overall performance
        overall = results["overall_metrics"]
        print(f"\nπŸ“Š Overall Performance:")
        print(f"   Accuracy: {overall['overall_accuracy']:.3f}")
        if "macro_precision" in overall:
            print(f"   Macro Precision: {overall['macro_precision']:.3f}")
            print(f"   Macro Recall: {overall['macro_recall']:.3f}")
            print(f"   Macro F1: {overall['macro_f1']:.3f}")

        # Per-class performance
        if "per_class_metrics" in overall:
            print(f"\nπŸ“‹ Per-Class Performance:")
            print(
                f"{'Intent':<15} {'Precision':<10} {'Recall':<10} {'F1':<10} {'Support':<10}"
            )
            print("-" * 65)

            per_class = overall["per_class_metrics"]
            for intent in self.expected_intents:
                if intent in per_class:
                    metrics = per_class[intent]
                    print(
                        f"{intent:<15} {metrics['precision']:<10.3f} {metrics['recall']:<10.3f} {metrics['f1']:<10.3f} {metrics['support']:<10}"
                    )

        # Critical intents performance
        if "critical_intent_recall" in overall:
            print(f"\n🚨 Critical Intent Performance:")
            for intent, recall in overall["critical_intent_recall"].items():
                status = "βœ…" if recall >= 0.85 else "⚠️" if recall >= 0.75 else "❌"
                print(f"   {status} {intent}: Recall = {recall:.3f}")

        # Method-specific performance
        print(f"\nπŸ”„ Performance by Generation Method:")
        method_metrics = results["method_specific_metrics"]
        if method_metrics:
            print(f"{'Method':<20} {'Accuracy':<10} {'Macro F1':<10} {'Messages':<10}")
            print("-" * 55)

            for method, metrics in method_metrics.items():
                accuracy = metrics["overall_accuracy"]
                macro_f1 = metrics.get("macro_f1", 0)
                total_msgs = metrics["total_messages"]
                print(
                    f"{method:<20} {accuracy:<10.3f} {macro_f1:<10.3f} {total_msgs:<10}"
                )

        # Flow-specific performance
        print(f"\nπŸ”€ Performance by Agent Flow:")
        flow_metrics = results["flow_specific_metrics"]
        if flow_metrics:
            print(
                f"{'Flow Type':<20} {'Accuracy':<10} {'Macro F1':<10} {'Messages':<10}"
            )
            print("-" * 55)

            for flow, metrics in flow_metrics.items():
                accuracy = metrics["overall_accuracy"]
                macro_f1 = metrics.get("macro_f1", 0)
                total_msgs = metrics["total_messages"]
                flow_display = f"{flow}_flow"
                print(
                    f"{flow_display:<20} {accuracy:<10.3f} {macro_f1:<10.3f} {total_msgs:<10}"
                )

        # Intent distribution comparison
        print(f"\nπŸ“ˆ Intent Distribution:")
        gt_dist = results["intent_distribution"]["ground_truth"]
        pred_dist = results["intent_distribution"]["predicted"]

        print(f"{'Intent':<15} {'Ground Truth':<15} {'Predicted':<15}")
        print("-" * 50)

        all_intents = set(list(gt_dist.keys()) + list(pred_dist.keys()))
        for intent in sorted(all_intents):
            gt_count = gt_dist.get(intent, 0)
            pred_count = pred_dist.get(intent, 0)
            print(f"{intent:<15} {gt_count:<15} {pred_count:<15}")

        # Method insights
        print(f"\nπŸ’‘ Method-Specific Insights:")
        if method_metrics:
            method_accuracies = {
                method: metrics["overall_accuracy"]
                for method, metrics in method_metrics.items()
            }
            best_method = max(
                method_accuracies.keys(), key=lambda k: method_accuracies[k]
            )
            worst_method = min(
                method_accuracies.keys(), key=lambda k: method_accuracies[k]
            )

            print(
                f"   β€’ Best performing method: {best_method} ({method_accuracies[best_method]:.3f})"
            )
            print(
                f"   β€’ Most challenging method: {worst_method} ({method_accuracies[worst_method]:.3f})"
            )
            print(
                f"   β€’ Performance gap: {method_accuracies[best_method] - method_accuracies[worst_method]:.3f}"
            )

        # Flow insights
        print(f"\nπŸ”€ Flow-Specific Insights:")
        if flow_metrics:
            flow_accuracies = {
                flow: metrics["overall_accuracy"]
                for flow, metrics in flow_metrics.items()
            }

            if len(flow_accuracies) >= 2:
                best_flow = max(
                    flow_accuracies.keys(), key=lambda k: flow_accuracies[k]
                )
                worst_flow = min(
                    flow_accuracies.keys(), key=lambda k: flow_accuracies[k]
                )

                print(
                    f"   β€’ Best performing flow: {best_flow} ({flow_accuracies[best_flow]:.3f})"
                )
                print(
                    f"   β€’ Most challenging flow: {worst_flow} ({flow_accuracies[worst_flow]:.3f})"
                )
                print(
                    f"   β€’ Flow performance gap: {flow_accuracies[best_flow] - flow_accuracies[worst_flow]:.3f}"
                )

                # Provide interpretation
                if (
                    "script_based" in flow_accuracies
                    and "knowledge_based" in flow_accuracies
                ):
                    script_acc = flow_accuracies["script_based"]
                    kb_acc = flow_accuracies["knowledge_based"]

                    if script_acc > kb_acc:
                        print(
                            f"   β€’ Script-based intents are easier to classify ({script_acc:.3f} vs {kb_acc:.3f})"
                        )
                    elif kb_acc > script_acc:
                        print(
                            f"   β€’ Knowledge-based intents are easier to classify ({kb_acc:.3f} vs {script_acc:.3f})"
                        )
                    else:
                        print(
                            f"   β€’ Both flows perform similarly ({script_acc:.3f} vs {kb_acc:.3f})"
                        )
            else:
                for flow, accuracy in flow_accuracies.items():
                    print(f"   β€’ {flow} flow accuracy: {accuracy:.3f}")

        # Success criteria check
        print(f"\nβœ… Success Criteria Check:")
        accuracy = overall["overall_accuracy"]
        if accuracy >= 0.80:
            print(f"   πŸŽ‰ GOOD: Overall accuracy {accuracy:.3f} >= 0.80")
        elif accuracy >= 0.75:
            print(f"   ⚠️ OKAY: Overall accuracy {accuracy:.3f} >= 0.75")
        else:
            print(f"   ❌ NEEDS WORK: Overall accuracy {accuracy:.3f} < 0.75")


def main():
    """Main function for simplified intent classification evaluation"""
    parser = argparse.ArgumentParser(
        description="Simplified ViettelPay Intent Classification Evaluation"
    )
    parser.add_argument(
        "--mode",
        choices=["create", "evaluate", "full"],
        default="full",
        help="Mode: create dataset, evaluate, or full pipeline",
    )
    parser.add_argument(
        "--dataset-path",
        default="evaluation_data/datasets/intent_classification/viettelpay_intent_dataset.json",
        help="Path to intent dataset",
    )
    parser.add_argument(
        "--results-path",
        default="evaluation_data/results/intent_classification/viettelpay_intent_results.json",
        help="Path to save evaluation results",
    )
    parser.add_argument(
        "--conversations-per-chunk",
        type=int,
        default=3,
        help="Number of conversations per chunk (default: 3)",
    )
    parser.add_argument(
        "--knowledge-base-path",
        default="./knowledge_base",
        help="Path to knowledge base",
    )

    args = parser.parse_args()

    # Configuration
    GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

    if not GEMINI_API_KEY:
        print("❌ Please set GEMINI_API_KEY environment variable")
        return

    try:
        # Initialize components based on mode
        kb = None
        if args.mode in ["create", "full"]:
            # Initialize knowledge base only if creating dataset
            print("πŸ”§ Initializing ViettelPay knowledge base...")
            kb = ViettelKnowledgeBase()
            if not kb.load_knowledge_base(args.knowledge_base_path):
                print(
                    "❌ Failed to load knowledge base. Please run build_database_script.py first."
                )
                return

        # Step 1: Create dataset if requested
        if args.mode in ["create", "full"]:
            print(f"\n🎯 Creating simplified intent classification dataset...")
            creator = IntentDatasetCreator(GEMINI_API_KEY, kb)

            dataset = creator.create_intent_dataset(
                num_conversations_per_chunk=args.conversations_per_chunk,
                save_path=args.dataset_path,
            )

        # Step 2: Evaluate if requested
        if args.mode in ["evaluate", "full"]:
            print(f"\nπŸ“Š Evaluating intent classification...")

            # Load dataset if not created in this run
            if args.mode == "evaluate":
                if not os.path.exists(args.dataset_path):
                    print(f"❌ Dataset not found: {args.dataset_path}")
                    return

                with open(args.dataset_path, "r", encoding="utf-8") as f:
                    dataset = json.load(f)

            # Initialize LLM client for intent classification
            print("πŸ€– Initializing LLM client for intent classification...")
            llm_client = LLMClientFactory.create_client(
                "gemini", api_key=GEMINI_API_KEY, model="gemini-2.0-flash"
            )

            # Run evaluation
            evaluator = IntentClassificationEvaluator(dataset, llm_client)
            results = evaluator.evaluate_intent_classification()
            evaluator.print_evaluation_results(results)

            # Save results
            if args.results_path:
                with open(args.results_path, "w", encoding="utf-8") as f:
                    json.dump(results, f, ensure_ascii=False, indent=2)
                print(f"\nπŸ’Ύ Results saved to: {args.results_path}")

        print(f"\nβœ… Intent classification evaluation completed successfully!")
        print(f"\nπŸ’‘ Summary improvements made:")
        print(f"   β€’ Removed pattern-based generation for simplicity")
        print(f"   β€’ Added configurable conversations-per-chunk (default: 3)")
        print(f"   β€’ Improved chunk mixing (random 2-3 chunks)")
        print(f"   β€’ Enhanced prompts to include non-topic intents")
        print(f"   β€’ Added flow-specific analysis (script-based vs knowledge-based)")

    except Exception as e:
        print(f"❌ Error in main execution: {e}")
        import traceback

        traceback.print_exc()


if __name__ == "__main__":
    main()