Spaces:
Running
Running
File size: 36,423 Bytes
60d1d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
"""
Simplified Intent Classification Evaluation for ViettelPay AI Agent
Removed pattern-based generation, improved chunk mixing, and configurable conversations per chunk
"""
import json
import os
import sys
import argparse
import time
import random
from typing import Dict, List, Optional
from pathlib import Path
from collections import defaultdict, Counter
import pandas as pd
from tqdm import tqdm
import re
import numpy as np
# Load environment variables from .env file
from dotenv import load_dotenv
load_dotenv()
# Add the project root to Python path so we can import from src
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))
# Import existing components
from src.evaluation.prompts import INTENT_CLASSIFICATION_CONVERSATION_GENERATION_PROMPT
from src.knowledge_base.viettel_knowledge_base import ViettelKnowledgeBase
from src.llm.llm_client import LLMClientFactory
from src.agent.nodes import classify_intent_node, ViettelPayState
from langchain_core.messages import HumanMessage
class IntentDatasetCreator:
"""Simplified intent classification dataset creator with two strategies"""
def __init__(
self, gemini_api_key: str, knowledge_base: ViettelKnowledgeBase = None
):
"""Initialize with Gemini API key and optional knowledge base"""
self.llm_client = LLMClientFactory.create_client(
"gemini", api_key=gemini_api_key, model="gemini-2.0-flash"
)
self.knowledge_base = knowledge_base
self.dataset = {
"conversations": {},
"generation_methods": {},
"intent_distribution": {},
"metadata": {
"total_conversations": 0,
"total_user_messages": 0,
"creation_timestamp": time.time(),
},
}
print("β
IntentDatasetCreator initialized (simplified version)")
def generate_json_response(
self, prompt: str, max_retries: int = 3
) -> Optional[Dict]:
"""Generate response and parse as JSON with retries"""
for attempt in range(max_retries):
try:
response = self.llm_client.generate(prompt, temperature=0.1)
if response:
response_text = response.strip()
json_match = re.search(r"\{.*\}", response_text, re.DOTALL)
if json_match:
json_text = json_match.group()
return json.loads(json_text)
else:
return json.loads(response_text)
except json.JSONDecodeError as e:
print(f"β οΈ JSON parsing error (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
print(f"β Failed to parse JSON after {max_retries} attempts")
except Exception as e:
print(f"β οΈ API error (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(2**attempt)
return None
def get_all_chunks(self) -> List[Dict]:
"""Get ALL chunks from ChromaDB vectorstore"""
print(f"π Retrieving ALL chunks from ChromaDB vectorstore...")
if not self.knowledge_base:
raise ValueError("Knowledge base not provided.")
try:
if (
not hasattr(self.knowledge_base, "chroma_retriever")
or not self.knowledge_base.chroma_retriever
):
raise ValueError("ChromaDB retriever not found in knowledge base")
vectorstore = self.knowledge_base.chroma_retriever.vectorstore
all_docs = vectorstore.get(include=["documents", "metadatas"])
documents = all_docs["documents"]
metadatas = all_docs["metadatas"]
all_chunks = []
seen_content_hashes = set()
for i, (content, metadata) in enumerate(zip(documents, metadatas)):
content_hash = hash(content[:300])
if (
content_hash not in seen_content_hashes
and len(content.strip()) > 100
):
chunk_info = {
"id": f"chunk_{len(all_chunks)}",
"content": content,
"metadata": metadata or {},
}
all_chunks.append(chunk_info)
seen_content_hashes.add(content_hash)
print(f"β
Retrieved {len(all_chunks)} unique chunks from ChromaDB")
return all_chunks
except Exception as e:
print(f"β Error accessing ChromaDB: {e}")
return []
def generate_single_chunk_conversations(
self, chunk: Dict, num_conversations: int = 3
) -> List[Dict]:
"""Generate conversations from single chunk"""
content = chunk["content"]
generation_instruction = "TαΊ‘o cuα»c hα»i thoαΊ‘i tαΊp trung vΓ o chα»§ Δα» chΓnh cα»§a tΓ i liα»u. Bao gα»m cαΊ£ cΓ‘c intent phα» biαΊΏn nhΖ° greeting, unclear, human_request Δα» tΔng tΓnh Δa dαΊ‘ng"
prompt = INTENT_CLASSIFICATION_CONVERSATION_GENERATION_PROMPT.format(
num_conversations=num_conversations,
content=content,
generation_instruction=generation_instruction,
)
response_json = self.generate_json_response(prompt)
if response_json and "conversations" in response_json:
conversations = response_json["conversations"]
valid_conversations = []
for i, conversation in enumerate(conversations):
if "turns" in conversation and len(conversation["turns"]) >= 1:
valid_turns = []
for turn in conversation["turns"]:
if "user" in turn and "intent" in turn:
valid_turns.append(turn)
if valid_turns:
conv_obj = {
"id": f"single_{chunk['id']}_{i}",
"turns": valid_turns,
"generation_method": "single_chunk",
"source_chunks": [chunk["id"]],
"chunk_metadata": [chunk["metadata"]],
}
valid_conversations.append(conv_obj)
return valid_conversations
else:
print(f"β οΈ No valid conversations generated for chunk {chunk['id']}")
return []
def generate_multi_chunk_conversations(
self, chunks: List[Dict], num_conversations: int = 3
) -> List[Dict]:
"""Generate conversations from multiple chunks (2-3 chunks)"""
# Combine content from multiple chunks
combined_content = ""
for i, chunk in enumerate(chunks):
combined_content += f"\n\n--- Chα»§ Δα» {i+1} ---\n" + chunk["content"]
generation_instruction = f"TαΊ‘o cuα»c hα»i thoαΊ‘i tα»± nhiΓͺn kαΊΏt hợp {len(chunks)} chα»§ Δα» khΓ‘c nhau. NgΖ°α»i dΓΉng cΓ³ thα» chuyα»n tα»« chα»§ Δα» nΓ y sang chα»§ Δα» khΓ‘c. ΔαΊ·c biα»t bao gα»m cΓ‘c intent nhΖ° greeting, unclear, human_request Δα» cuα»c hα»i thoαΊ‘i thα»±c tαΊΏ hΖ‘n"
prompt = INTENT_CLASSIFICATION_CONVERSATION_GENERATION_PROMPT.format(
num_conversations=num_conversations,
content=combined_content,
generation_instruction=generation_instruction,
)
response_json = self.generate_json_response(prompt)
if response_json and "conversations" in response_json:
conversations = response_json["conversations"]
valid_conversations = []
for i, conversation in enumerate(conversations):
if "turns" in conversation and len(conversation["turns"]) >= 1:
valid_turns = []
for turn in conversation["turns"]:
if "user" in turn and "intent" in turn:
valid_turns.append(turn)
if valid_turns:
conv_obj = {
"id": f"multi_{'-'.join([c['id'] for c in chunks])}_{i}",
"turns": valid_turns,
"generation_method": "multi_chunk",
"source_chunks": [c["id"] for c in chunks],
"chunk_metadata": [c["metadata"] for c in chunks],
}
valid_conversations.append(conv_obj)
print(
f"β
Generated {len(valid_conversations)} conversations for multi-chunk {[c['id'] for c in chunks]}"
)
return valid_conversations
else:
print(
f"β οΈ No valid conversations generated for chunks {[c['id'] for c in chunks]}"
)
return []
def create_intent_dataset(
self,
num_conversations_per_chunk: int = 3,
save_path: str = "evaluation_data/datasets/intent_classification/viettelpay_intent_dataset.json",
) -> Dict:
"""Create intent classification dataset using two strategies only"""
print(f"\nπ Creating intent classification dataset...")
print(f" Conversations per chunk: {num_conversations_per_chunk}")
# Step 1: Get all chunks
all_chunks = self.get_all_chunks()
if not all_chunks:
raise ValueError("No chunks found in knowledge base!")
total_chunks = len(all_chunks)
print(f"β
Using all {total_chunks} chunks and shuffle them")
random.shuffle(all_chunks)
# Step 2: Split chunks for two strategies (60% single, 40% multi)
split_point = int(total_chunks * 0.6)
single_chunks = all_chunks[:split_point]
multi_chunks = all_chunks[split_point:]
print(f"π Distribution plan:")
print(
f" β’ Single chunk: {len(single_chunks)} chunks β ~{len(single_chunks) * num_conversations_per_chunk} conversations"
)
print(
f" β’ Multi chunk: {len(multi_chunks)} chunks β ~{len(multi_chunks) // 2.5 * num_conversations_per_chunk} conversations"
)
all_conversations = []
# Step 3: Generate single-chunk conversations
print(f"\n㪠Generating single-chunk conversations...")
for chunk in tqdm(single_chunks, desc="Single-chunk conversations"):
conversations = self.generate_single_chunk_conversations(
chunk, num_conversations_per_chunk
)
all_conversations.extend(conversations)
time.sleep(0.1)
# Step 4: Generate multi-chunk conversations (2-3 chunks randomly)
print(f"\nπ Generating multi-chunk conversations...")
random.shuffle(multi_chunks) # Randomize order
i = 0
while i < len(multi_chunks):
# Randomly choose to use 2 or 3 chunks
chunk_count = random.choice([2, 3])
chunk_group = multi_chunks[i : i + chunk_count]
# Only proceed if we have at least 2 chunks
if len(chunk_group) >= 2:
conversations = self.generate_multi_chunk_conversations(
chunk_group, num_conversations_per_chunk
)
all_conversations.extend(conversations)
time.sleep(0.1)
i += chunk_count
# Step 5: Track generation methods and intent distribution
method_stats = defaultdict(int)
intent_counts = Counter()
for conv in all_conversations:
method_stats[conv["generation_method"]] += 1
for turn in conv["turns"]:
intent_counts[turn["intent"]] += 1
# Step 6: Populate dataset structure
self.dataset["conversations"] = {conv["id"]: conv for conv in all_conversations}
self.dataset["generation_methods"] = dict(method_stats)
self.dataset["intent_distribution"] = dict(intent_counts)
# Step 7: Update metadata
total_user_messages = sum(len(conv["turns"]) for conv in all_conversations)
self.dataset["metadata"].update(
{
"total_conversations": len(all_conversations),
"total_user_messages": total_user_messages,
"chunks_used": total_chunks,
"conversations_per_chunk": num_conversations_per_chunk,
"generation_distribution": dict(method_stats),
"completion_timestamp": time.time(),
}
)
# Step 8: Save dataset
os.makedirs(
os.path.dirname(save_path) if os.path.dirname(save_path) else ".",
exist_ok=True,
)
with open(save_path, "w", encoding="utf-8") as f:
json.dump(self.dataset, f, ensure_ascii=False, indent=2)
print(f"\nβ
Intent classification dataset created successfully!")
print(f" π Saved to: {save_path}")
print(f" π Statistics:")
print(f" β’ Total conversations: {len(all_conversations)}")
print(f" β’ Total user messages: {total_user_messages}")
print(f" β’ Conversations per chunk: {num_conversations_per_chunk}")
print(f" β’ Generation methods: {dict(method_stats)}")
print(f" β’ Intent distribution: {dict(intent_counts)}")
return self.dataset
class IntentClassificationEvaluator:
"""Evaluator for intent classification performance with method-specific analysis"""
def __init__(self, dataset: Dict, llm_client):
"""Initialize evaluator with dataset and LLM client"""
self.dataset = dataset
self.llm_client = llm_client
# Define expected intents
self.expected_intents = [
"greeting",
"faq",
"error_help",
"procedure_guide",
"human_request",
"out_of_scope",
"unclear",
]
# Critical intents for business
self.critical_intents = ["error_help", "human_request"]
# Define flow mappings based on agent routing logic
self.script_based_intents = {
"greeting",
"out_of_scope",
"human_request",
"unclear",
}
self.knowledge_based_intents = {
"faq",
"error_help",
"procedure_guide",
}
def _get_intent_flow(self, intent: str) -> str:
"""Classify intent into flow type based on agent routing logic"""
if intent in self.script_based_intents:
return "script_based"
elif intent in self.knowledge_based_intents:
return "knowledge_based"
else:
return "unknown"
def _make_json_serializable(self, obj):
"""Convert numpy types to native Python types for JSON serialization"""
try:
import numpy as np
if isinstance(obj, dict):
return {k: self._make_json_serializable(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [self._make_json_serializable(item) for item in obj]
elif isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
except ImportError:
# If numpy is not available, just return the object as-is
if isinstance(obj, dict):
return {k: self._make_json_serializable(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [self._make_json_serializable(item) for item in obj]
else:
return obj
def calculate_essential_metrics(
self, ground_truth: List[str], predictions: List[str]
) -> Dict:
"""Calculate only essential metrics: accuracy, macro, per-class"""
try:
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
overall_accuracy = accuracy_score(ground_truth, predictions)
# Calculate macro metrics (equal weight per intent)
precision, recall, f1, support = precision_recall_fscore_support(
ground_truth, predictions, average="macro", zero_division=0
)
macro_metrics = {
"macro_precision": precision,
"macro_recall": recall,
"macro_f1": f1,
}
# Calculate per-class metrics
precision_per_class, recall_per_class, f1_per_class, support_per_class = (
precision_recall_fscore_support(
ground_truth, predictions, average=None, zero_division=0
)
)
# Get unique labels
unique_labels = sorted(list(set(ground_truth + predictions)))
per_class_metrics = {}
for i, label in enumerate(unique_labels):
if i < len(precision_per_class):
per_class_metrics[label] = {
"precision": float(precision_per_class[i]),
"recall": float(recall_per_class[i]),
"f1": float(f1_per_class[i]),
"support": int(
support_per_class[i] if i < len(support_per_class) else 0
),
}
# Calculate critical intent recall
critical_recall = {}
for intent in self.critical_intents:
if intent in per_class_metrics:
critical_recall[intent] = per_class_metrics[intent]["recall"]
return {
"overall_accuracy": float(overall_accuracy),
"macro_precision": float(macro_metrics["macro_precision"]),
"macro_recall": float(macro_metrics["macro_recall"]),
"macro_f1": float(macro_metrics["macro_f1"]),
"per_class_metrics": per_class_metrics,
"critical_intent_recall": {
k: float(v) for k, v in critical_recall.items()
},
}
except ImportError:
print("β οΈ scikit-learn not installed. Using basic accuracy only.")
overall_accuracy = sum(
1 for gt, pred in zip(ground_truth, predictions) if gt == pred
) / len(predictions)
return {"overall_accuracy": float(overall_accuracy)}
def evaluate_intent_classification(self) -> Dict:
"""Evaluate intent classification performance with method and flow breakdown"""
print(f"\nπ― Running intent classification evaluation...")
conversations = self.dataset["conversations"]
# Initialize tracking
all_predictions = []
all_ground_truth = []
method_results = defaultdict(lambda: {"predictions": [], "ground_truth": []})
flow_results = defaultdict(lambda: {"predictions": [], "ground_truth": []})
conversation_results = {}
# Process each conversation
for conv_id, conv_data in tqdm(
conversations.items(), desc="Evaluating conversations"
):
generation_method = conv_data.get("generation_method", "unknown")
conversation_results[conv_id] = {
"turns": [],
"accuracy": 0,
"generation_method": generation_method,
}
correct_predictions = 0
total_turns = len(conv_data["turns"])
# Process each turn in the conversation
for turn_idx, turn in enumerate(conv_data["turns"]):
user_message = turn["user"]
ground_truth_intent = turn["intent"]
try:
# Create messages in the format expected by classify_intent_node
messages = [HumanMessage(content=user_message)]
# Create a mock state for the intent classification node
state = ViettelPayState(messages=messages)
# Use the classify_intent_node directly
result_state = classify_intent_node(state, self.llm_client)
predicted_intent = result_state.get("intent", "unclear")
# Track results
is_correct = predicted_intent == ground_truth_intent
if is_correct:
correct_predictions += 1
# Add to overall tracking
all_predictions.append(predicted_intent)
all_ground_truth.append(ground_truth_intent)
# Add to method-specific tracking
method_results[generation_method]["predictions"].append(
predicted_intent
)
method_results[generation_method]["ground_truth"].append(
ground_truth_intent
)
# Add to flow-specific tracking
ground_truth_flow = self._get_intent_flow(ground_truth_intent)
predicted_flow = self._get_intent_flow(predicted_intent)
flow_results[ground_truth_flow]["predictions"].append(
predicted_intent
)
flow_results[ground_truth_flow]["ground_truth"].append(
ground_truth_intent
)
conversation_results[conv_id]["turns"].append(
{
"turn": turn_idx + 1,
"user_message": user_message,
"ground_truth": ground_truth_intent,
"predicted": predicted_intent,
"correct": is_correct,
}
)
except Exception as e:
print(f"β οΈ Error processing turn {turn_idx} in {conv_id}: {e}")
# Use "unclear" as fallback prediction
all_predictions.append("unclear")
all_ground_truth.append(ground_truth_intent)
method_results[generation_method]["predictions"].append("unclear")
method_results[generation_method]["ground_truth"].append(
ground_truth_intent
)
# Add to flow-specific tracking (for errors)
ground_truth_flow = self._get_intent_flow(ground_truth_intent)
flow_results[ground_truth_flow]["predictions"].append("unclear")
flow_results[ground_truth_flow]["ground_truth"].append(
ground_truth_intent
)
# Calculate conversation accuracy
conversation_results[conv_id]["accuracy"] = float(
correct_predictions / total_turns if total_turns > 0 else 0
)
# Calculate overall metrics
overall_metrics = self.calculate_essential_metrics(
all_ground_truth, all_predictions
)
# Calculate method-specific metrics
method_metrics = {}
for method, method_data in method_results.items():
if method_data["predictions"]: # Ensure we have data
method_metrics[method] = self.calculate_essential_metrics(
method_data["ground_truth"], method_data["predictions"]
)
method_metrics[method]["total_messages"] = len(
method_data["predictions"]
)
# Calculate flow-specific metrics
flow_metrics = {}
for flow, flow_data in flow_results.items():
if flow_data["predictions"]: # Ensure we have data
flow_metrics[flow] = self.calculate_essential_metrics(
flow_data["ground_truth"], flow_data["predictions"]
)
flow_metrics[flow]["total_messages"] = len(flow_data["predictions"])
results = {
"overall_metrics": overall_metrics,
"method_specific_metrics": method_metrics,
"flow_specific_metrics": flow_metrics,
"conversation_results": conversation_results,
"intent_distribution": {
"ground_truth": dict(Counter(all_ground_truth)),
"predicted": dict(Counter(all_predictions)),
},
"generation_methods": self.dataset.get("generation_methods", {}),
}
# Make sure all values are JSON serializable
results = self._make_json_serializable(results)
return results
def print_evaluation_results(self, results: Dict):
"""Print comprehensive evaluation results"""
print(f"\nπ― INTENT CLASSIFICATION EVALUATION RESULTS")
print("=" * 60)
# Overall performance
overall = results["overall_metrics"]
print(f"\nπ Overall Performance:")
print(f" Accuracy: {overall['overall_accuracy']:.3f}")
if "macro_precision" in overall:
print(f" Macro Precision: {overall['macro_precision']:.3f}")
print(f" Macro Recall: {overall['macro_recall']:.3f}")
print(f" Macro F1: {overall['macro_f1']:.3f}")
# Per-class performance
if "per_class_metrics" in overall:
print(f"\nπ Per-Class Performance:")
print(
f"{'Intent':<15} {'Precision':<10} {'Recall':<10} {'F1':<10} {'Support':<10}"
)
print("-" * 65)
per_class = overall["per_class_metrics"]
for intent in self.expected_intents:
if intent in per_class:
metrics = per_class[intent]
print(
f"{intent:<15} {metrics['precision']:<10.3f} {metrics['recall']:<10.3f} {metrics['f1']:<10.3f} {metrics['support']:<10}"
)
# Critical intents performance
if "critical_intent_recall" in overall:
print(f"\nπ¨ Critical Intent Performance:")
for intent, recall in overall["critical_intent_recall"].items():
status = "β
" if recall >= 0.85 else "β οΈ" if recall >= 0.75 else "β"
print(f" {status} {intent}: Recall = {recall:.3f}")
# Method-specific performance
print(f"\nπ Performance by Generation Method:")
method_metrics = results["method_specific_metrics"]
if method_metrics:
print(f"{'Method':<20} {'Accuracy':<10} {'Macro F1':<10} {'Messages':<10}")
print("-" * 55)
for method, metrics in method_metrics.items():
accuracy = metrics["overall_accuracy"]
macro_f1 = metrics.get("macro_f1", 0)
total_msgs = metrics["total_messages"]
print(
f"{method:<20} {accuracy:<10.3f} {macro_f1:<10.3f} {total_msgs:<10}"
)
# Flow-specific performance
print(f"\nπ Performance by Agent Flow:")
flow_metrics = results["flow_specific_metrics"]
if flow_metrics:
print(
f"{'Flow Type':<20} {'Accuracy':<10} {'Macro F1':<10} {'Messages':<10}"
)
print("-" * 55)
for flow, metrics in flow_metrics.items():
accuracy = metrics["overall_accuracy"]
macro_f1 = metrics.get("macro_f1", 0)
total_msgs = metrics["total_messages"]
flow_display = f"{flow}_flow"
print(
f"{flow_display:<20} {accuracy:<10.3f} {macro_f1:<10.3f} {total_msgs:<10}"
)
# Intent distribution comparison
print(f"\nπ Intent Distribution:")
gt_dist = results["intent_distribution"]["ground_truth"]
pred_dist = results["intent_distribution"]["predicted"]
print(f"{'Intent':<15} {'Ground Truth':<15} {'Predicted':<15}")
print("-" * 50)
all_intents = set(list(gt_dist.keys()) + list(pred_dist.keys()))
for intent in sorted(all_intents):
gt_count = gt_dist.get(intent, 0)
pred_count = pred_dist.get(intent, 0)
print(f"{intent:<15} {gt_count:<15} {pred_count:<15}")
# Method insights
print(f"\nπ‘ Method-Specific Insights:")
if method_metrics:
method_accuracies = {
method: metrics["overall_accuracy"]
for method, metrics in method_metrics.items()
}
best_method = max(
method_accuracies.keys(), key=lambda k: method_accuracies[k]
)
worst_method = min(
method_accuracies.keys(), key=lambda k: method_accuracies[k]
)
print(
f" β’ Best performing method: {best_method} ({method_accuracies[best_method]:.3f})"
)
print(
f" β’ Most challenging method: {worst_method} ({method_accuracies[worst_method]:.3f})"
)
print(
f" β’ Performance gap: {method_accuracies[best_method] - method_accuracies[worst_method]:.3f}"
)
# Flow insights
print(f"\nπ Flow-Specific Insights:")
if flow_metrics:
flow_accuracies = {
flow: metrics["overall_accuracy"]
for flow, metrics in flow_metrics.items()
}
if len(flow_accuracies) >= 2:
best_flow = max(
flow_accuracies.keys(), key=lambda k: flow_accuracies[k]
)
worst_flow = min(
flow_accuracies.keys(), key=lambda k: flow_accuracies[k]
)
print(
f" β’ Best performing flow: {best_flow} ({flow_accuracies[best_flow]:.3f})"
)
print(
f" β’ Most challenging flow: {worst_flow} ({flow_accuracies[worst_flow]:.3f})"
)
print(
f" β’ Flow performance gap: {flow_accuracies[best_flow] - flow_accuracies[worst_flow]:.3f}"
)
# Provide interpretation
if (
"script_based" in flow_accuracies
and "knowledge_based" in flow_accuracies
):
script_acc = flow_accuracies["script_based"]
kb_acc = flow_accuracies["knowledge_based"]
if script_acc > kb_acc:
print(
f" β’ Script-based intents are easier to classify ({script_acc:.3f} vs {kb_acc:.3f})"
)
elif kb_acc > script_acc:
print(
f" β’ Knowledge-based intents are easier to classify ({kb_acc:.3f} vs {script_acc:.3f})"
)
else:
print(
f" β’ Both flows perform similarly ({script_acc:.3f} vs {kb_acc:.3f})"
)
else:
for flow, accuracy in flow_accuracies.items():
print(f" β’ {flow} flow accuracy: {accuracy:.3f}")
# Success criteria check
print(f"\nβ
Success Criteria Check:")
accuracy = overall["overall_accuracy"]
if accuracy >= 0.80:
print(f" π GOOD: Overall accuracy {accuracy:.3f} >= 0.80")
elif accuracy >= 0.75:
print(f" β οΈ OKAY: Overall accuracy {accuracy:.3f} >= 0.75")
else:
print(f" β NEEDS WORK: Overall accuracy {accuracy:.3f} < 0.75")
def main():
"""Main function for simplified intent classification evaluation"""
parser = argparse.ArgumentParser(
description="Simplified ViettelPay Intent Classification Evaluation"
)
parser.add_argument(
"--mode",
choices=["create", "evaluate", "full"],
default="full",
help="Mode: create dataset, evaluate, or full pipeline",
)
parser.add_argument(
"--dataset-path",
default="evaluation_data/datasets/intent_classification/viettelpay_intent_dataset.json",
help="Path to intent dataset",
)
parser.add_argument(
"--results-path",
default="evaluation_data/results/intent_classification/viettelpay_intent_results.json",
help="Path to save evaluation results",
)
parser.add_argument(
"--conversations-per-chunk",
type=int,
default=3,
help="Number of conversations per chunk (default: 3)",
)
parser.add_argument(
"--knowledge-base-path",
default="./knowledge_base",
help="Path to knowledge base",
)
args = parser.parse_args()
# Configuration
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
print("β Please set GEMINI_API_KEY environment variable")
return
try:
# Initialize components based on mode
kb = None
if args.mode in ["create", "full"]:
# Initialize knowledge base only if creating dataset
print("π§ Initializing ViettelPay knowledge base...")
kb = ViettelKnowledgeBase()
if not kb.load_knowledge_base(args.knowledge_base_path):
print(
"β Failed to load knowledge base. Please run build_database_script.py first."
)
return
# Step 1: Create dataset if requested
if args.mode in ["create", "full"]:
print(f"\nπ― Creating simplified intent classification dataset...")
creator = IntentDatasetCreator(GEMINI_API_KEY, kb)
dataset = creator.create_intent_dataset(
num_conversations_per_chunk=args.conversations_per_chunk,
save_path=args.dataset_path,
)
# Step 2: Evaluate if requested
if args.mode in ["evaluate", "full"]:
print(f"\nπ Evaluating intent classification...")
# Load dataset if not created in this run
if args.mode == "evaluate":
if not os.path.exists(args.dataset_path):
print(f"β Dataset not found: {args.dataset_path}")
return
with open(args.dataset_path, "r", encoding="utf-8") as f:
dataset = json.load(f)
# Initialize LLM client for intent classification
print("π€ Initializing LLM client for intent classification...")
llm_client = LLMClientFactory.create_client(
"gemini", api_key=GEMINI_API_KEY, model="gemini-2.0-flash"
)
# Run evaluation
evaluator = IntentClassificationEvaluator(dataset, llm_client)
results = evaluator.evaluate_intent_classification()
evaluator.print_evaluation_results(results)
# Save results
if args.results_path:
with open(args.results_path, "w", encoding="utf-8") as f:
json.dump(results, f, ensure_ascii=False, indent=2)
print(f"\nπΎ Results saved to: {args.results_path}")
print(f"\nβ
Intent classification evaluation completed successfully!")
print(f"\nπ‘ Summary improvements made:")
print(f" β’ Removed pattern-based generation for simplicity")
print(f" β’ Added configurable conversations-per-chunk (default: 3)")
print(f" β’ Improved chunk mixing (random 2-3 chunks)")
print(f" β’ Enhanced prompts to include non-topic intents")
print(f" β’ Added flow-specific analysis (script-based vs knowledge-based)")
except Exception as e:
print(f"β Error in main execution: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|