Spaces:
Running
Running
File size: 15,922 Bytes
60d1d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
"""
ViettelPay AI Agent using LangGraph
Multi-turn conversation support with short-term memory using InMemorySaver
"""
import os
from typing import Dict, Optional
from functools import partial
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import InMemorySaver
from langchain_core.messages import HumanMessage
from src.agent.nodes import (
ViettelPayState,
classify_intent_node,
query_enhancement_node,
knowledge_retrieval_node,
script_response_node,
generate_response_node,
route_after_intent_classification,
route_after_query_enhancement,
route_after_knowledge_retrieval,
)
# Import configuration utility
from src.utils.config import get_knowledge_base_path, get_llm_provider
class ViettelPayAgent:
"""Main ViettelPay AI Agent using LangGraph workflow with multi-turn conversation support"""
def __init__(
self,
knowledge_base_path: str = None,
scripts_file: Optional[str] = None,
llm_provider: str = None,
):
knowledge_base_path = knowledge_base_path or get_knowledge_base_path()
scripts_file = scripts_file or "./viettelpay_docs/processed/kich_ban.csv"
llm_provider = llm_provider or get_llm_provider()
self.knowledge_base_path = knowledge_base_path
self.scripts_file = scripts_file
self.llm_provider = llm_provider
# Initialize LLM client once during agent creation
print(f"🧠 Initializing LLM client ({self.llm_provider})...")
from src.llm.llm_client import LLMClientFactory
self.llm_client = LLMClientFactory.create_client(self.llm_provider)
print(f"✅ LLM client initialized and ready")
# Initialize knowledge retriever once during agent creation
print(f"📚 Initializing knowledge retriever...")
try:
from src.knowledge_base.viettel_knowledge_base import ViettelKnowledgeBase
self.knowledge_base = ViettelKnowledgeBase()
ensemble_retriever = self.knowledge_base.load_knowledge_base(
knowledge_base_path
)
if not ensemble_retriever:
raise ValueError(
f"Knowledge base not found at {knowledge_base_path}. Run build_database_script.py first."
)
print(f"✅ Knowledge retriever initialized and ready")
except Exception as e:
print(f"⚠️ Knowledge retriever initialization failed: {e}")
self.knowledge_base = None
# Initialize checkpointer for short-term memory
self.checkpointer = InMemorySaver()
# Build workflow with pre-initialized components
self.workflow = self._build_workflow()
self.app = self.workflow.compile(checkpointer=self.checkpointer)
print("✅ ViettelPay Agent initialized with multi-turn conversation support")
def _build_workflow(self) -> StateGraph:
"""Build LangGraph workflow with pre-initialized components"""
# Create workflow graph
workflow = StateGraph(ViettelPayState)
# Create node functions with pre-bound components using functools.partial
# This eliminates the need to initialize components in each node call
classify_intent_with_llm = partial(
classify_intent_node, llm_client=self.llm_client
)
query_enhancement_with_llm = partial(
query_enhancement_node, llm_client=self.llm_client
)
knowledge_retrieval_with_retriever = partial(
knowledge_retrieval_node, knowledge_retriever=self.knowledge_base
)
generate_response_with_llm = partial(
generate_response_node, llm_client=self.llm_client
)
# Add nodes (some with pre-bound components, some without)
workflow.add_node("classify_intent", classify_intent_with_llm)
workflow.add_node("query_enhancement", query_enhancement_with_llm)
workflow.add_node("knowledge_retrieval", knowledge_retrieval_with_retriever)
workflow.add_node(
"script_response", script_response_node
) # No pre-bound components needed
workflow.add_node("generate_response", generate_response_with_llm)
# Set entry point
workflow.set_entry_point("classify_intent")
# Add conditional routing after intent classification
workflow.add_conditional_edges(
"classify_intent",
route_after_intent_classification,
{
"script_response": "script_response",
"query_enhancement": "query_enhancement",
},
)
# Script responses go directly to end
workflow.add_edge("script_response", END)
# Query enhancement goes to knowledge retrieval
workflow.add_edge("query_enhancement", "knowledge_retrieval")
# Knowledge retrieval goes to response generation
workflow.add_edge("knowledge_retrieval", "generate_response")
workflow.add_edge("generate_response", END)
print("🔄 LangGraph workflow built successfully with optimized component usage")
return workflow
def process_message(self, user_message: str, thread_id: str = "default") -> Dict:
"""Process a user message in a multi-turn conversation"""
print(f"\n💬 Processing message: '{user_message}' (thread: {thread_id})")
print("=" * 50)
# Create configuration with thread_id for conversation memory
config = {"configurable": {"thread_id": thread_id}}
try:
# Create human message
human_message = HumanMessage(content=user_message)
# Initialize state with the new message
# Note: conversation_context is set to None so it gets recomputed with fresh message history
initial_state = {
"messages": [human_message],
"intent": None,
"confidence": None,
"enhanced_query": None,
"retrieved_docs": None,
"conversation_context": None, # Reset to ensure fresh context computation
"response_type": None,
"error": None,
"processing_info": None,
}
# Run workflow with memory
result = self.app.invoke(initial_state, config)
# Extract response from the last AI message
messages = result.get("messages", [])
if messages:
# Get the last AI message
last_message = messages[-1]
if hasattr(last_message, "content"):
response = last_message.content
else:
response = str(last_message)
else:
response = "Xin lỗi, em không thể xử lý yêu cầu này."
response_type = result.get("response_type", "unknown")
intent = result.get("intent", "unknown")
confidence = result.get("confidence", 0.0)
enhanced_query = result.get("enhanced_query", "")
error = result.get("error")
# Build response info
response_info = {
"response": response,
"intent": intent,
"confidence": confidence,
"response_type": response_type,
"enhanced_query": enhanced_query,
"success": error is None,
"error": error,
"thread_id": thread_id,
"message_count": len(messages),
}
print(f"✅ Response generated successfully")
print(f" Intent: {intent} (confidence: {confidence})")
print(f" Type: {response_type}")
if enhanced_query and enhanced_query != user_message:
print(f" Enhanced query: {enhanced_query}")
print(f" Thread: {thread_id}")
return response_info
except Exception as e:
print(f"❌ Workflow error: {e}")
return {
"response": "Xin lỗi, em gặp lỗi kỹ thuật. Vui lòng thử lại sau.",
"intent": "error",
"confidence": 0.0,
"response_type": "error",
"enhanced_query": "",
"success": False,
"error": str(e),
"thread_id": thread_id,
"message_count": 0,
}
def chat(self, user_message: str, thread_id: str = "default") -> str:
"""Simple chat interface - returns just the response text"""
result = self.process_message(user_message, thread_id)
return result["response"]
def get_conversation_history(self, thread_id: str = "default") -> list:
"""Get conversation history for a specific thread"""
try:
config = {"configurable": {"thread_id": thread_id}}
# Get the current state to access message history
current_state = self.app.get_state(config)
if current_state and current_state.values.get("messages"):
messages = current_state.values["messages"]
history = []
for msg in messages:
if hasattr(msg, "type") and hasattr(msg, "content"):
role = "user" if msg.type == "human" else "assistant"
history.append({"role": role, "content": msg.content})
elif hasattr(msg, "role") and hasattr(msg, "content"):
history.append({"role": msg.role, "content": msg.content})
return history
else:
return []
except Exception as e:
print(f"❌ Error getting conversation history: {e}")
return []
def clear_conversation(self, thread_id: str = "default") -> bool:
"""Clear conversation history for a specific thread"""
try:
# Note: InMemorySaver doesn't have a direct clear method
# The conversation will be cleared when the app is restarted
# For persistent memory, you'd need to implement a clear method
print(f"📝 Conversation clearing requested for thread: {thread_id}")
print(" Note: InMemorySaver conversations clear on app restart")
return True
except Exception as e:
print(f"❌ Error clearing conversation: {e}")
return False
def get_workflow_info(self) -> Dict:
"""Get information about the workflow structure"""
return {
"nodes": [
"classify_intent",
"query_enhancement",
"knowledge_retrieval",
"script_response",
"generate_response",
],
"entry_point": "classify_intent",
"knowledge_base_path": self.knowledge_base_path,
"scripts_file": self.scripts_file,
"llm_provider": self.llm_provider,
"memory_type": "InMemorySaver",
"multi_turn": True,
"query_enhancement": True,
"optimizations": {
"llm_client": "Single initialization with functools.partial",
"knowledge_retriever": "Single initialization with functools.partial",
"conversation_context": "Cached in state to avoid repeated computation",
},
}
def health_check(self) -> Dict:
"""Check if all components are working"""
health_status = {
"agent": True,
"workflow": True,
"memory": True,
"llm": False,
"knowledge_base": False,
"scripts": False,
"overall": False,
}
try:
# Test LLM client (already initialized)
test_response = self.llm_client.generate("Hello", temperature=0.1)
health_status["llm"] = bool(test_response)
print("✅ LLM client working")
except Exception as e:
print(f"⚠️ LLM health check failed: {e}")
health_status["llm"] = False
try:
# Test memory/checkpointer
test_config = {"configurable": {"thread_id": "health_check"}}
test_state = {"messages": [HumanMessage(content="test")]}
# Try to invoke with memory
self.app.invoke(test_state, test_config)
health_status["memory"] = True
print("✅ Memory/checkpointer working")
except Exception as e:
print(f"⚠️ Memory health check failed: {e}")
health_status["memory"] = False
try:
# Test knowledge base (using pre-initialized retriever)
if self.knowledge_base:
# Test a simple search to verify it's working
test_docs = self.knowledge_base.search("test", top_k=1)
health_status["knowledge_base"] = True
print("✅ Knowledge retriever working")
else:
health_status["knowledge_base"] = False
print("❌ Knowledge retriever not initialized")
except Exception as e:
print(f"⚠️ Knowledge base health check failed: {e}")
health_status["knowledge_base"] = False
try:
# Test scripts
from src.agent.scripts import ConversationScripts
scripts = ConversationScripts(self.scripts_file)
health_status["scripts"] = len(scripts.get_all_script_types()) > 0
except Exception as e:
print(f"⚠️ Scripts health check failed: {e}")
# Overall health
health_status["overall"] = all(
[
health_status["agent"],
health_status["memory"],
health_status["llm"],
health_status["knowledge_base"],
health_status["scripts"],
]
)
return health_status
# Usage example and testing
if __name__ == "__main__":
# Initialize agent
agent = ViettelPayAgent()
# Health check
print("\n🏥 Health Check:")
health = agent.health_check()
for component, status in health.items():
status_icon = "✅" if status else "❌"
print(f" {component}: {status_icon}")
if not health["overall"]:
print("\n⚠️ Some components are not healthy. Check requirements and data files.")
exit(1)
print(f"\n🤖 Agent ready! Workflow info: {agent.get_workflow_info()}")
# Test multi-turn conversation with query enhancement
test_thread = "test_conversation"
print(
f"\n🧪 Testing multi-turn conversation with query enhancement (thread: {test_thread}):"
)
test_messages = [
"Xin chào!",
"Mã lỗi 606 là gì?",
"Làm sao khắc phục?", # This should be enhanced to "làm sao khắc phục lỗi 606"
"Còn lỗi nào khác tương tự không?", # This should be enhanced with error context
"Cảm ơn bạn!",
]
for i, message in enumerate(test_messages, 1):
print(f"\n--- Turn {i} ---")
result = agent.process_message(message, test_thread)
print(f"User: {message}")
print(f"Bot: {result['response'][:150]}...")
if result.get("enhanced_query") and result["enhanced_query"] != message:
print(f"🚀 Query enhanced: {result['enhanced_query']}")
# Show conversation history
if i > 1:
history = agent.get_conversation_history(test_thread)
print(f"History length: {len(history)} messages")
print(f"\n📜 Final conversation history:")
history = agent.get_conversation_history(test_thread)
for i, msg in enumerate(history, 1):
print(f" {i}. {msg['role']}: {msg['content'][:100]}...")
|