File size: 16,346 Bytes
60d1d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
"""
LangGraph Agent State and Processing Nodes
"""

from typing import Dict, List, Optional, TypedDict, Annotated
from langchain.schema import Document
from langchain_core.messages import AnyMessage
from langgraph.graph.message import add_messages
import json
import re

from src.agent.prompts import (
    INTENT_CLASSIFICATION_PROMPT,
    QUERY_ENHANCEMENT_PROMPT,
    RESPONSE_GENERATION_PROMPT,
    get_system_prompt_by_intent,
)


class ViettelPayState(TypedDict):
    """State for ViettelPay agent workflow with message history support"""

    # Message history for multi-turn conversation
    messages: Annotated[List[AnyMessage], add_messages]

    # Processing
    intent: Optional[str]
    confidence: Optional[float]

    # Query enhancement
    enhanced_query: Optional[str]

    # Knowledge retrieval
    retrieved_docs: Optional[List[Document]]

    # Conversation context (cached to avoid repeated computation)
    conversation_context: Optional[str]

    # Response type metadata
    response_type: Optional[str]  # "script" or "generated"

    # Metadata
    error: Optional[str]
    processing_info: Optional[Dict]


def get_conversation_context(messages: List[AnyMessage], max_messages: int = 3) -> str:
    """
    Extract conversation context from message history

    Args:
        messages: List of conversation messages
        max_messages: Maximum number of recent messages to include

    Returns:
        Formatted conversation context string
    """
    if len(messages) <= 1:
        return ""

    context = "\n\nLịch sử cuộc hội thoại:\n"
    # Get recent messages (excluding the current/last message for intent classification)
    recent_messages = messages[
        -(max_messages + 1) : -1
    ]  # Exclude the very last message

    for msg in recent_messages:
        # Handle different message types more robustly
        if hasattr(msg, "type"):
            if msg.type == "human":
                role = "Người dùng"
            elif msg.type == "ai":
                role = "Trợ lý"
            else:
                role = f"Unknown-{msg.type}"
        elif hasattr(msg, "role"):
            if msg.role in ["user", "human"]:
                role = "Người dùng"
            elif msg.role in ["assistant", "ai"]:
                role = "Trợ lý"
            else:
                role = f"Unknown-{msg.role}"
        else:
            role = "Unknown"

        # Limit message length to avoid token overflow
        # content = msg.content[:1000] + "..." if len(msg.content) > 1000 else msg.content
        content = msg.content
        context += f"{role}: {content}\n"
    # print(context)
    return context


def classify_intent_node(state: ViettelPayState, llm_client) -> ViettelPayState:
    """Node for intent classification using LLM with conversation context"""

    # Get the latest user message
    messages = state["messages"]
    if not messages:
        return {
            **state,
            "intent": "unclear",
            "confidence": 0.0,
            "error": "No messages found",
        }

    # Find the last human/user message
    user_message = None
    for msg in reversed(messages):
        if hasattr(msg, "type") and msg.type == "human":
            user_message = msg.content
            break
        elif hasattr(msg, "role") and msg.role == "user":
            user_message = msg.content
            break

    if not user_message:
        return {
            **state,
            "intent": "unclear",
            "confidence": 0.0,
            "error": "No user message found",
        }

    try:
        # Get conversation context for better intent classification
        conversation_context = get_conversation_context(messages)

        # Intent classification prompt with context using the prompts file
        classification_prompt = INTENT_CLASSIFICATION_PROMPT.format(
            conversation_context=conversation_context, user_message=user_message
        )

        # Get classification using the pre-initialized LLM client
        response = llm_client.generate(classification_prompt, temperature=0.1)

        # print(f"🔍 Raw LLM response: {response}")

        # Parse JSON response
        try:
            # Try to extract JSON from response (in case there's extra text)
            response_clean = response.strip()

            # Look for JSON object in the response
            json_match = re.search(r"\{.*\}", response_clean, re.DOTALL)
            if json_match:
                json_str = json_match.group()
                result = json.loads(json_str)
            else:
                # Try parsing the whole response
                result = json.loads(response_clean)

            intent = result.get("intent", "unclear")
            confidence = result.get("confidence", 0.5)
            explanation = result.get("explanation", "")

            # print(
            #     f"✅ JSON parsed successfully: intent={intent}, confidence={confidence}"
            # )

        except (json.JSONDecodeError, AttributeError) as e:
            print(f"❌ JSON parsing failed: {e}")
            print(f"   Raw response: {response}")

            # Fallback: try to extract intent from text
            response_lower = response.lower()
            if any(
                word in response_lower for word in ["lỗi", "error", "606", "mã lỗi"]
            ):
                intent = "error_help"
                confidence = 0.7
            elif any(word in response_lower for word in ["xin chào", "hello", "chào"]):
                intent = "greeting"
                confidence = 0.8
            elif any(word in response_lower for word in ["hủy", "cancel", "thủ tục"]):
                intent = "procedure_guide"
                confidence = 0.7
            elif any(
                word in response_lower for word in ["nạp", "cước", "dịch vụ", "faq"]
            ):
                intent = "faq"
                confidence = 0.7
            else:
                intent = "unclear"
                confidence = 0.3

            print(f"🔄 Fallback classification: {intent} (confidence: {confidence})")
            explanation = "Fallback classification due to JSON parse error"

        # print(f"🎯 Intent classified: {intent} (confidence: {confidence})")

        return {
            **state,
            "intent": intent,
            "confidence": confidence,
            "conversation_context": conversation_context,  # Save context for reuse
            "processing_info": {
                "classification_raw": response,
                "explanation": explanation,
                "context_used": bool(conversation_context.strip()),
            },
        }

    except Exception as e:
        print(f"❌ Intent classification error: {e}")
        return {**state, "intent": "unclear", "confidence": 0.0, "error": str(e)}


def query_enhancement_node(state: ViettelPayState, llm_client) -> ViettelPayState:
    """Node for enhancing search query using conversation context"""

    # Get the latest user message
    messages = state["messages"]
    if not messages:
        return {**state, "enhanced_query": "", "error": "No messages found"}

    # Find the last human/user message
    user_message = None
    for msg in reversed(messages):
        if hasattr(msg, "type") and msg.type == "human":
            user_message = msg.content
            break
        elif hasattr(msg, "role") and msg.role == "user":
            user_message = msg.content
            break

    if not user_message:
        return {**state, "enhanced_query": "", "error": "No user message found"}

    try:
        # Use saved conversation context if available, otherwise get it
        conversation_context = state.get("conversation_context")
        if conversation_context is None:
            conversation_context = get_conversation_context(messages)

        # If no context, use original message
        if not conversation_context.strip():
            print(f"🔍 No context available, using original query: {user_message}")
            return {**state, "enhanced_query": user_message}

        # Query enhancement prompt using the prompts file
        enhancement_prompt = QUERY_ENHANCEMENT_PROMPT.format(
            conversation_context=conversation_context, user_message=user_message
        )

        # Get enhanced query
        enhanced_query = llm_client.generate(enhancement_prompt, temperature=0.1)
        enhanced_query = enhanced_query.strip()

        print(f"🔍 Original query: {user_message}")
        print(f"🚀 Enhanced query: {enhanced_query}")

        return {**state, "enhanced_query": enhanced_query}

    except Exception as e:
        print(f"❌ Query enhancement error: {e}")
        # Fallback to original message
        return {**state, "enhanced_query": user_message, "error": str(e)}


def knowledge_retrieval_node(
    state: ViettelPayState, knowledge_retriever
) -> ViettelPayState:
    """Node for knowledge retrieval using pre-initialized ViettelKnowledgeBase"""

    # Use enhanced query if available, otherwise fall back to extracting from messages
    enhanced_query = state.get("enhanced_query", "")

    if not enhanced_query:
        # Fallback: extract from messages
        messages = state["messages"]
        if not messages:
            return {**state, "retrieved_docs": [], "error": "No messages found"}

        # Find the last human/user message
        for msg in reversed(messages):
            if hasattr(msg, "type") and msg.type == "human":
                enhanced_query = msg.content
                break
            elif hasattr(msg, "role") and msg.role == "user":
                enhanced_query = msg.content
                break

    if not enhanced_query:
        return {**state, "retrieved_docs": [], "error": "No query available"}

    try:
        if not knowledge_retriever:
            raise ValueError("Knowledge retriever not available")

        # Retrieve relevant documents using enhanced query and pre-initialized ViettelKnowledgeBase
        retrieved_docs = knowledge_retriever.search(enhanced_query, top_k=10)

        print(
            f"📚 Retrieved {len(retrieved_docs)} documents for enhanced query: {enhanced_query}"
        )

        return {**state, "retrieved_docs": retrieved_docs}

    except Exception as e:
        print(f"❌ Knowledge retrieval error: {e}")
        return {**state, "retrieved_docs": [], "error": str(e)}


def script_response_node(state: ViettelPayState) -> ViettelPayState:
    """Node for script-based responses"""

    from src.agent.scripts import ConversationScripts
    from langchain_core.messages import AIMessage

    intent = state.get("intent", "")

    try:
        # Load scripts
        scripts = ConversationScripts("./viettelpay_docs/processed/kich_ban.csv")

        # Map intents to script types
        intent_to_script = {
            "greeting": "greeting",
            "out_of_scope": "out_of_scope",
            "human_request": "human_request_attempt_1",  # Could be enhanced later
            "unclear": "ask_for_clarity",
        }

        script_type = intent_to_script.get(intent)

        if script_type and scripts.has_script(script_type):
            response_text = scripts.get_script(script_type)
            print(f"📋 Using script response: {script_type}")

            # Add AI message to the conversation
            ai_message = AIMessage(content=response_text)

            return {**state, "messages": [ai_message], "response_type": "script"}

        else:
            # Fallback script
            fallback_response = (
                "Xin lỗi, em chưa hiểu rõ yêu cầu của anh/chị. Vui lòng thử lại."
            )
            ai_message = AIMessage(content=fallback_response)

            print(f"📋 Using fallback script for intent: {intent}")

            return {**state, "messages": [ai_message], "response_type": "script"}

    except Exception as e:
        print(f"❌ Script response error: {e}")
        fallback_response = "Xin lỗi, em gặp lỗi kỹ thuật. Vui lòng thử lại sau."
        ai_message = AIMessage(content=fallback_response)

        return {
            **state,
            "messages": [ai_message],
            "response_type": "error",
            "error": str(e),
        }


def generate_response_node(state: ViettelPayState, llm_client) -> ViettelPayState:
    """Node for LLM-based response generation with conversation context"""

    from langchain_core.messages import AIMessage

    # Get the latest user message and conversation history
    messages = state["messages"]
    if not messages:
        ai_message = AIMessage(content="Xin lỗi, em không thể xử lý yêu cầu này.")
        return {**state, "messages": [ai_message], "response_type": "error"}

    # Find the last human/user message
    user_message = None
    for msg in reversed(messages):
        if hasattr(msg, "type") and msg.type == "human":
            user_message = msg.content
            break
        elif hasattr(msg, "role") and msg.role == "user":
            user_message = msg.content
            break

    if not user_message:
        ai_message = AIMessage(content="Xin lỗi, em không thể xử lý yêu cầu này.")
        return {**state, "messages": [ai_message], "response_type": "error"}

    intent = state.get("intent", "")
    retrieved_docs = state.get("retrieved_docs", [])
    enhanced_query = state.get("enhanced_query", "")

    try:
        # Build context from retrieved documents using original content
        context = ""
        if retrieved_docs:
            context = "\n\n".join(
                [
                    f"[{doc.metadata.get('doc_type', 'unknown')}] {doc.metadata.get('original_content', doc.page_content)}"
                    for doc in retrieved_docs
                ]
            )

        # Use saved conversation context if available, otherwise get it
        conversation_context = state.get("conversation_context")
        if conversation_context is None:
            conversation_context = get_conversation_context(messages, max_messages=6)

        # Get system prompt based on intent using the prompts file
        system_prompt = get_system_prompt_by_intent(intent)

        # Build full prompt with both knowledge context and conversation context using the prompts file
        generation_prompt = RESPONSE_GENERATION_PROMPT.format(
            system_prompt=system_prompt,
            context=context,
            conversation_context=conversation_context,
            user_message=user_message,
            enhanced_query=enhanced_query,
        )

        # Generate response using the pre-initialized LLM client
        response_text = llm_client.generate(generation_prompt, temperature=0.1)

        print(f"🤖 Generated response for intent: {intent}")

        # Add AI message to the conversation
        ai_message = AIMessage(content=response_text)

        return {**state, "messages": [ai_message], "response_type": "generated"}

    except Exception as e:
        print(f"❌ Response generation error: {e}")
        error_response = "Xin lỗi, em gặp lỗi khi xử lý yêu cầu. Vui lòng thử lại sau."
        ai_message = AIMessage(content=error_response)

        return {
            **state,
            "messages": [ai_message],
            "response_type": "error",
            "error": str(e),
        }


# Routing function for conditional edges
def route_after_intent_classification(state: ViettelPayState) -> str:
    """Route to appropriate node after intent classification"""

    intent = state.get("intent", "unclear")

    # Script-based intents (no knowledge retrieval needed)
    script_intents = {"greeting", "out_of_scope", "human_request", "unclear"}

    if intent in script_intents:
        return "script_response"
    else:
        # Knowledge-based intents need query enhancement first
        return "query_enhancement"


def route_after_query_enhancement(state: ViettelPayState) -> str:
    """Route after query enhancement (always to knowledge retrieval)"""
    return "knowledge_retrieval"


def route_after_knowledge_retrieval(state: ViettelPayState) -> str:
    """Route after knowledge retrieval (always to generation)"""
    return "generate_response"