Spaces:
Sleeping
Sleeping
File size: 19,954 Bytes
f0ca8e0 4a98225 f0ca8e0 4a98225 f0ca8e0 4a98225 f0ca8e0 7cc748c f0ca8e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import numpy as np
from typing import List, Dict, Tuple, Optional
from scipy.optimize import linear_sum_assignment
import yaml
import cv2
import hashlib
import torch
try:
from transformers import CLIPModel, CLIPProcessor
CLIP_AVAILABLE = True
except ImportError:
print("CLIP not available. Using traditional features only.")
print(" Install with: pip install transformers")
CLIP_AVAILABLE = False
_GLOBAL_CLIP_MODEL = None
_GLOBAL_CLIP_PROCESSOR = None
def get_clip_model():
"""Get or initialize global CLIP model"""
global _GLOBAL_CLIP_MODEL, _GLOBAL_CLIP_PROCESSOR
if _GLOBAL_CLIP_MODEL is None and CLIP_AVAILABLE:
try:
model_name = "openai/clip-vit-base-patch32"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_GLOBAL_CLIP_MODEL = CLIPModel.from_pretrained(model_name).to(device)
_GLOBAL_CLIP_PROCESSOR = CLIPProcessor.from_pretrained(model_name)
_GLOBAL_CLIP_MODEL.eval()
for param in _GLOBAL_CLIP_MODEL.parameters():
param.requires_grad = False
print(f"✓ CLIP model loaded for ReID: {model_name}")
except Exception as e:
print(f"⚠ CLIP loading failed: {e}. Using fallback features.")
_GLOBAL_CLIP_MODEL = None
_GLOBAL_CLIP_PROCESSOR = None
return _GLOBAL_CLIP_MODEL, _GLOBAL_CLIP_PROCESSOR
class DamageComparator:
"""Enhanced damage comparator with view-invariant re-identification"""
def __init__(self, config_path: str = "config.yaml"):
"""Initialize comparator with configuration"""
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
self.iou_threshold = self.config['comparison']['iou_match_threshold']
self.position_tolerance = self.config['comparison']['position_tolerance']
# Device selection
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get global CLIP model instead of creating new one
self.clip_model, self.clip_processor = get_clip_model()
# ReID thresholds
self.reid_similarity_threshold = 0.6
self.feature_cache = {}
def calculate_iou(self, box1: List[int], box2: List[int]) -> float:
"""Calculate Intersection over Union between two boxes"""
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
if x2 < x1 or y2 < y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = box1_area + box2_area - intersection
if union == 0:
return 0.0
return intersection / union
def extract_damage_features(self, image: np.ndarray, bbox: List[int]) -> np.ndarray:
"""
Extract view-invariant features for damage ReID
Args:
image: Full image
bbox: [x1, y1, x2, y2] bounding box
Returns:
Feature vector for ReID
"""
x1, y1, x2, y2 = bbox
# Ensure valid bbox
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(image.shape[1], x2), min(image.shape[0], y2)
damage_roi = image[y1:y2, x1:x2]
if damage_roi.size == 0:
return np.zeros(256) # Return zero vector for invalid ROI
features_list = []
# 1. CLIP features (if available) - Most powerful for ReID
if self.clip_model is not None:
clip_features = self._extract_clip_features(damage_roi)
features_list.append(clip_features)
# 2. Geometric invariant features (always available)
geometric_features = self._extract_geometric_features(damage_roi)
features_list.append(geometric_features)
# 3. Texture features
texture_features = self._extract_texture_features(damage_roi)
features_list.append(texture_features)
# 4. Context features (position on car)
context_features = self._extract_context_features(image, bbox)
features_list.append(context_features)
# Concatenate and normalize
combined_features = np.concatenate(features_list, axis=0)
# L2 normalization for cosine similarity
norm = np.linalg.norm(combined_features)
if norm > 0:
combined_features = combined_features / norm
return combined_features
def _extract_clip_features(self, roi: np.ndarray) -> np.ndarray:
"""Extract CLIP vision features"""
try:
# Convert BGR to RGB
roi_rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
# Process with CLIP
inputs = self.clip_processor(images=roi_rgb, return_tensors="pt", use_fast=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
image_features = self.clip_model.get_image_features(**inputs)
features = image_features.cpu().numpy().flatten()
# Reduce dimensionality
return features[:128] # Take first 128 dimensions
except Exception as e:
return np.zeros(128)
def _extract_geometric_features(self, roi: np.ndarray) -> np.ndarray:
"""Extract geometric invariant features (Hu moments)"""
features = []
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
# Hu moments - invariant to rotation, scale, translation
try:
moments = cv2.moments(gray)
hu_moments = cv2.HuMoments(moments).flatten()
# Log transform for stability
hu_moments = -np.sign(hu_moments) * np.log10(np.abs(hu_moments) + 1e-10)
features.extend(hu_moments[:7])
except:
features.extend([0] * 7)
# Shape features
edges = cv2.Canny(gray, 50, 150)
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
area = cv2.contourArea(largest_contour)
perimeter = cv2.arcLength(largest_contour, True)
if perimeter > 0:
circularity = 4 * np.pi * area / (perimeter ** 2)
features.append(circularity)
else:
features.append(0)
# Aspect ratio
x, y, w, h = cv2.boundingRect(largest_contour)
aspect_ratio = w / h if h > 0 else 1
features.append(aspect_ratio)
else:
features.extend([0, 0])
return np.array(features)
def _extract_texture_features(self, roi: np.ndarray) -> np.ndarray:
"""Extract texture features using simplified LBP"""
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
# Resize to fixed size for consistency
gray_resized = cv2.resize(gray, (32, 32))
# Simple texture statistics
features = []
features.append(np.mean(gray_resized))
features.append(np.std(gray_resized))
# Gradient features
dx = cv2.Sobel(gray_resized, cv2.CV_64F, 1, 0, ksize=3)
dy = cv2.Sobel(gray_resized, cv2.CV_64F, 0, 1, ksize=3)
features.append(np.mean(np.abs(dx)))
features.append(np.mean(np.abs(dy)))
features.append(np.std(dx))
features.append(np.std(dy))
return np.array(features)
def _extract_context_features(self, image: np.ndarray, bbox: List[int]) -> np.ndarray:
"""Extract context features (position on car)"""
h, w = image.shape[:2]
x1, y1, x2, y2 = bbox
# Normalized position
cx = (x1 + x2) / 2 / w
cy = (y1 + y2) / 2 / h
width_ratio = (x2 - x1) / w
height_ratio = (y2 - y1) / h
# Position indicators
is_left = cx < 0.33
is_center = 0.33 <= cx <= 0.67
is_right = cx > 0.67
is_top = cy < 0.4
is_middle = 0.4 <= cy <= 0.7
is_bottom = cy > 0.7
features = [
cx, cy, width_ratio, height_ratio,
float(is_left), float(is_center), float(is_right),
float(is_top), float(is_middle), float(is_bottom)
]
return np.array(features)
def match_damages_with_reid(self,
detections1: Dict,
detections2: Dict,
image1: Optional[np.ndarray] = None,
image2: Optional[np.ndarray] = None) -> Dict:
"""
Enhanced damage matching with ReID capability
Args:
detections1, detections2: Detection results
image1, image2: Original images for feature extraction
Returns:
Matching results with ReID
"""
boxes1 = detections1['boxes']
boxes2 = detections2['boxes']
print(f"\n🔍 DEBUG match_damages_with_reid:")
print(f" Boxes1: {len(boxes1)}, Boxes2: {len(boxes2)}")
print(f" Images provided: {image1 is not None and image2 is not None}")
if len(boxes1) == 0 and len(boxes2) == 0:
return {
'matched_pairs': [],
'unmatched_before': [],
'unmatched_after': [],
'iou_matrix': None,
'reid_scores': None
}
if len(boxes1) == 0:
return {
'matched_pairs': [],
'unmatched_before': [],
'unmatched_after': list(range(len(boxes2))),
'iou_matrix': None,
'reid_scores': None
}
if len(boxes2) == 0:
return {
'matched_pairs': [],
'unmatched_before': list(range(len(boxes1))),
'unmatched_after': [],
'iou_matrix': None,
'reid_scores': None
}
# Calculate IoU matrix (traditional matching)
iou_matrix = np.zeros((len(boxes1), len(boxes2)))
for i, box1 in enumerate(boxes1):
for j, box2 in enumerate(boxes2):
iou_matrix[i, j] = self.calculate_iou(box1, box2)
# Calculate ReID similarity matrix if images provided
reid_matrix = None
if image1 is not None and image2 is not None:
reid_matrix = np.zeros((len(boxes1), len(boxes2)))
# Extract features for all boxes
features1 = [self.extract_damage_features(image1, box) for box in boxes1]
features2 = [self.extract_damage_features(image2, box) for box in boxes2]
# Calculate cosine similarity
for i, feat1 in enumerate(features1):
for j, feat2 in enumerate(features2):
reid_matrix[i, j] = np.dot(feat1, feat2) # Already normalized
# Combine IoU and ReID scores
if reid_matrix is not None:
# Weighted combination: IoU (spatial) + ReID (appearance)
# Give more weight to ReID for better cross-view matching
print(f" ReID matrix shape: {reid_matrix.shape}")
print(f" ReID max similarity: {reid_matrix.max():.3f}")
print(f" ReID mean similarity: {reid_matrix.mean():.3f}")
print(f" Threshold: {self.reid_similarity_threshold}")
combined_matrix = 0.3 * iou_matrix + 0.7 * reid_matrix
else:
combined_matrix = iou_matrix
# Hungarian algorithm for optimal matching
cost_matrix = 1 - combined_matrix
row_indices, col_indices = linear_sum_assignment(cost_matrix)
# Filter matches by threshold
matched_pairs = []
matched_rows = set()
matched_cols = set()
# Use different threshold based on whether ReID is available
threshold = self.reid_similarity_threshold if reid_matrix is not None else self.iou_threshold
for i, j in zip(row_indices, col_indices):
score = combined_matrix[i, j]
if score >= threshold:
# Also check class consistency
if detections1['classes'][i] == detections2['classes'][j]:
matched_pairs.append((i, j, score))
matched_rows.add(i)
matched_cols.add(j)
# Find unmatched damages
unmatched_before = [i for i in range(len(boxes1)) if i not in matched_rows]
unmatched_after = [j for j in range(len(boxes2)) if j not in matched_cols]
print(f" IoU matrix max: {iou_matrix.max():.3f}")
print(f" Combined score max: {combined_matrix.max():.3f}")
return {
'matched_pairs': matched_pairs,
'unmatched_before': unmatched_before,
'unmatched_after': unmatched_after,
'iou_matrix': iou_matrix.tolist(),
'reid_scores': reid_matrix.tolist() if reid_matrix is not None else None
}
def match_damages(self, detections1: Dict, detections2: Dict) -> Dict:
"""
Original matching method (backward compatibility)
"""
return self.match_damages_with_reid(detections1, detections2, None, None)
# In src/comparison.py, update the analyze_damage_status method:
def analyze_damage_status(self,
before_detections: Dict,
after_detections: Dict,
before_image: Optional[np.ndarray] = None,
after_image: Optional[np.ndarray] = None) -> Dict:
"""
Enhanced damage analysis with ReID support
"""
# Use enhanced matching with ReID if images provided
matching = self.match_damages_with_reid(
before_detections, after_detections,
before_image, after_image
)
# Extract damage information
matched_damages = []
for i, j, score in matching['matched_pairs']:
matched_damages.append({
'type': before_detections['classes'][i],
'confidence_before': float(before_detections['confidences'][i]), # Convert to Python float
'confidence_after': float(after_detections['confidences'][j]), # Convert to Python float
'box_before': before_detections['boxes'][i],
'box_after': after_detections['boxes'][j],
'matching_score': float(score), # Convert to Python float
'is_same_damage': bool(score > self.reid_similarity_threshold) # Convert to Python bool
})
existing_damages = []
for i in matching['unmatched_before']:
existing_damages.append({
'type': before_detections['classes'][i],
'confidence': float(before_detections['confidences'][i]), # Convert to Python float
'box': before_detections['boxes'][i]
})
new_damages = []
for j in matching['unmatched_after']:
new_damages.append({
'type': after_detections['classes'][j],
'confidence': float(after_detections['confidences'][j]), # Convert to Python float
'box': after_detections['boxes'][j]
})
# Determine case
case = self._determine_case(matched_damages, existing_damages, new_damages)
return {
'case': case['type'],
'message': case['message'],
'matched_damages': matched_damages,
'repaired_damages': existing_damages,
'new_damages': new_damages,
'statistics': {
'total_before': len(before_detections['boxes']),
'total_after': len(after_detections['boxes']),
'matched': len(matched_damages),
'repaired': len(existing_damages),
'new': len(new_damages),
'using_reid': bool(before_image is not None and after_image is not None) # Convert to Python bool
}
}
def _determine_case(self, matched: List, repaired: List, new: List) -> Dict:
"""Determine which case the comparison falls into"""
# Case 3: Happy case - no damages at all
if len(matched) == 0 and len(repaired) == 0 and len(new) == 0:
return {
'type': 'CASE_3_SUCCESS',
'message': 'Successful delivery - No damage detected'
}
# Case 1: Existing damages remain
if len(matched) > 0 and len(new) == 0:
return {
'type': 'CASE_1_EXISTING',
'message': 'Error from the beginning, not during delivery -> Delivery completed'
}
# Case 2: New damages detected
if len(new) > 0:
return {
'type': 'CASE_2_NEW_DAMAGE',
'message': 'Delivery Defect - New Damage Discovered'
}
# Special case: All damages repaired
if len(repaired) > 0 and len(new) == 0 and len(matched) == 0:
return {
'type': 'CASE_REPAIRED',
'message': 'All damage repaired - Vehicle delivered successfully'
}
return {
'type': 'CASE_UNKNOWN',
'message': 'Status Undetermined'
}
def deduplicate_detections_across_views(self,
detections_list: List[Dict],
images_list: List[np.ndarray]) -> Dict:
"""
Deduplicate damages across multiple views of the same car
Args:
detections_list: List of detections from different views
images_list: List of corresponding images
Returns:
Unique damages with their appearances in different views
"""
all_damages = []
# Collect all damages with their features
for view_idx, (detections, image) in enumerate(zip(detections_list, images_list)):
for i, bbox in enumerate(detections['boxes']):
features = self.extract_damage_features(image, bbox)
all_damages.append({
'view_idx': view_idx,
'bbox': bbox,
'class': detections['classes'][i],
'confidence': detections['confidences'][i],
'features': features
})
# Group similar damages
groups = []
used = set()
for i, damage1 in enumerate(all_damages):
if i in used:
continue
group = [damage1]
used.add(i)
for j, damage2 in enumerate(all_damages):
if j in used or damage1['view_idx'] == damage2['view_idx']:
continue
# Calculate similarity
similarity = np.dot(damage1['features'], damage2['features'])
if similarity > self.reid_similarity_threshold:
# Check class consistency
if damage1['class'] == damage2['class']:
group.append(damage2)
used.add(j)
groups.append(group)
# Create unique damage IDs
unique_damages = {}
for group_idx, group in enumerate(groups):
# Generate consistent ID based on features
feature_hash = hashlib.md5(
group[0]['features'].tobytes()
).hexdigest()[:8]
damage_id = f"DMG_{feature_hash}"
unique_damages[damage_id] = {
'views': [d['view_idx'] for d in group],
'class': group[0]['class'],
'avg_confidence': np.mean([d['confidence'] for d in group]),
'detections': group
}
return unique_damages |