File size: 7,735 Bytes
c8a046c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import cv2
import numpy as np
from typing import List, Dict, Tuple
import yaml

class DamageVisualizer:
    """Visualize detection and comparison results"""

    def __init__(self, config_path: str = "config.yaml"):
        """Initialize visualizer with configuration"""
        with open(config_path, 'r') as f:
            self.config = yaml.safe_load(f)

        self.line_thickness = self.config['visualization']['line_thickness']
        self.font_scale = self.config['visualization']['font_scale']
        self.colors = self.config['visualization']['colors']

    def draw_detections(self, image: np.ndarray, detections: Dict,

                       color_type: str = 'new_damage') -> np.ndarray:
        """

        Draw bounding boxes and labels on image



        Args:

            image: Input image

            detections: Detection results

            color_type: Type of color to use ('new_damage', 'existing_damage', 'matched_damage')



        Returns:

            Image with drawn detections

        """
        img_copy = image.copy()
        color = self.colors.get(color_type, [255, 0, 0])

        for i, box in enumerate(detections['boxes']):
            x1, y1, x2, y2 = box
            label = f"{detections['classes'][i]} ({detections['confidences'][i]:.2f})"

            # Draw rectangle
            cv2.rectangle(img_copy, (x1, y1), (x2, y2), color, self.line_thickness)

            # Draw label background
            label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
                                           self.font_scale, self.line_thickness)
            cv2.rectangle(img_copy, (x1, y1 - label_size[1] - 5),
                         (x1 + label_size[0], y1), color, -1)

            # Draw label text
            cv2.putText(img_copy, label, (x1, y1 - 5),
                       cv2.FONT_HERSHEY_SIMPLEX, self.font_scale,
                       [255, 255, 255], self.line_thickness)

        return img_copy

    def create_comparison_visualization(self, before_img: np.ndarray, after_img: np.ndarray,

                                      before_detections: Dict, after_detections: Dict,

                                      comparison_result: Dict) -> np.ndarray:
        """

        Create side-by-side comparison visualization



        Args:

            before_img, after_img: Input images

            before_detections, after_detections: Detection results

            comparison_result: Comparison analysis results



        Returns:

            Combined visualization image

        """
        # Draw matched damages in yellow
        before_vis = before_img.copy()
        after_vis = after_img.copy()

        # Draw matched damages
        for match in comparison_result['matched_damages']:
            # Draw on before image
            x1, y1, x2, y2 = match['box_before']
            cv2.rectangle(before_vis, (x1, y1), (x2, y2),
                         self.colors['matched_damage'], self.line_thickness)

            # Draw on after image
            x1, y1, x2, y2 = match['box_after']
            cv2.rectangle(after_vis, (x1, y1), (x2, y2),
                         self.colors['matched_damage'], self.line_thickness)

        # Draw repaired damages (only on before) in green
        for damage in comparison_result['repaired_damages']:
            x1, y1, x2, y2 = damage['box']
            cv2.rectangle(before_vis, (x1, y1), (x2, y2),
                         self.colors['existing_damage'], self.line_thickness)
            cv2.putText(before_vis, "REPAIRED", (x1, y1 - 5),
                       cv2.FONT_HERSHEY_SIMPLEX, self.font_scale,
                       self.colors['existing_damage'], self.line_thickness)

        # Draw new damages (only on after) in red
        for damage in comparison_result['new_damages']:
            x1, y1, x2, y2 = damage['box']
            cv2.rectangle(after_vis, (x1, y1), (x2, y2),
                         self.colors['new_damage'], self.line_thickness + 1)
            cv2.putText(after_vis, "NEW!", (x1, y1 - 5),
                       cv2.FONT_HERSHEY_SIMPLEX, self.font_scale * 1.5,
                       self.colors['new_damage'], self.line_thickness)

        # Combine images side by side
        h1, w1 = before_vis.shape[:2]
        h2, w2 = after_vis.shape[:2]
        max_height = max(h1, h2)

        # Resize if needed
        if h1 != max_height:
            before_vis = cv2.resize(before_vis, (int(w1 * max_height / h1), max_height))
        if h2 != max_height:
            after_vis = cv2.resize(after_vis, (int(w2 * max_height / h2), max_height))

        # Create combined image
        combined = np.hstack([before_vis, after_vis])

        # Add status text
        status_height = 100
        status_img = np.ones((status_height, combined.shape[1], 3), dtype=np.uint8) * 255

        # Add case message
        case_color = (0, 128, 0) if 'SUCCESS' in comparison_result['case'] else (0, 0, 255)
        cv2.putText(status_img, comparison_result['message'], (20, 40),
                   cv2.FONT_HERSHEY_SIMPLEX, 0.8, case_color, 2)

        # Add statistics
        stats_text = f"Before: {comparison_result['statistics']['total_before']} | " \
                    f"After: {comparison_result['statistics']['total_after']} | " \
                    f"Matched: {comparison_result['statistics']['matched']} | " \
                    f"New: {comparison_result['statistics']['new']}"
        cv2.putText(status_img, stats_text, (20, 70),
                   cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)

        # Combine with status
        final_image = np.vstack([status_img, combined])

        return final_image

    def create_summary_grid(self, comparison_results: List[Dict],

                           image_pairs: List[Tuple[np.ndarray, np.ndarray]]) -> np.ndarray:
        """

        Create a grid visualization of all 6 position comparisons



        Args:

            comparison_results: List of comparison results for each position

            image_pairs: List of (before, after) image pairs



        Returns:

            Grid visualization of all positions

        """
        grid_images = []

        for i, (result, (before_img, after_img)) in enumerate(zip(comparison_results, image_pairs)):
            # Create mini comparison for each position
            target_size = (300, 200)  # Smaller size for grid

            before_small = cv2.resize(before_img, target_size)
            after_small = cv2.resize(after_img, target_size)

            # Add position label
            position_label = f"Position {i+1}"
            cv2.putText(before_small, position_label, (10, 20),
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
            cv2.putText(after_small, position_label, (10, 20),
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)

            # Add case indicator
            case_color = (0, 255, 0) if 'SUCCESS' in result['case'] else (0, 0, 255)
            if 'NEW_DAMAGE' in result['case']:
                case_color = (0, 0, 255)

            cv2.rectangle(after_small, (0, 0), (target_size[0], 30), case_color, -1)
            cv2.putText(after_small, result['case'][:10], (10, 20),
                       cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1)

            pair_img = np.hstack([before_small, after_small])
            grid_images.append(pair_img)

        # Create 2x3 grid
        row1 = np.hstack(grid_images[:3])
        row2 = np.hstack(grid_images[3:])
        grid = np.vstack([row1, row2])

        return grid