File size: 7,676 Bytes
c8a046c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
from typing import List, Dict
from scipy.optimize import linear_sum_assignment
import yaml

class DamageComparator:
    """Compare damages between before and after images"""

    def __init__(self, config_path: str = "config.yaml"):
        """Initialize comparator with configuration"""
        with open(config_path, 'r') as f:
            self.config = yaml.safe_load(f)

        self.iou_threshold = self.config['comparison']['iou_match_threshold']
        self.position_tolerance = self.config['comparison']['position_tolerance']

    def calculate_iou(self, box1: List[int], box2: List[int]) -> float:
        """

        Calculate Intersection over Union between two boxes



        Args:

            box1, box2: Bounding boxes in format [x1, y1, x2, y2]



        Returns:

            IoU value between 0 and 1

        """
        # Calculate intersection area
        x1 = max(box1[0], box2[0])
        y1 = max(box1[1], box2[1])
        x2 = min(box1[2], box2[2])
        y2 = min(box1[3], box2[3])

        if x2 < x1 or y2 < y1:
            return 0.0

        intersection = (x2 - x1) * (y2 - y1)

        # Calculate union area
        box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
        box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
        union = box1_area + box2_area - intersection

        # Calculate IoU
        if union == 0:
            return 0.0

        return intersection / union

    def match_damages(self, detections1: Dict, detections2: Dict) -> Dict:
        """

        Match damages between two sets of detections using Hungarian algorithm



        Args:

            detections1: First detection results (before)

            detections2: Second detection results (after)



        Returns:

            Matching results with paired and unpaired damages

        """
        boxes1 = detections1['boxes']
        boxes2 = detections2['boxes']

        if len(boxes1) == 0 and len(boxes2) == 0:
            return {
                'matched_pairs': [],
                'unmatched_before': [],
                'unmatched_after': [],
                'iou_matrix': None
            }

        if len(boxes1) == 0:
            return {
                'matched_pairs': [],
                'unmatched_before': [],
                'unmatched_after': list(range(len(boxes2))),
                'iou_matrix': None
            }

        if len(boxes2) == 0:
            return {
                'matched_pairs': [],
                'unmatched_before': list(range(len(boxes1))),
                'unmatched_after': [],
                'iou_matrix': None
            }

        # Calculate IoU matrix
        iou_matrix = np.zeros((len(boxes1), len(boxes2)))
        for i, box1 in enumerate(boxes1):
            for j, box2 in enumerate(boxes2):
                iou_matrix[i, j] = self.calculate_iou(box1, box2)

        # Use Hungarian algorithm for optimal matching
        # Convert to cost matrix (1 - IoU)
        cost_matrix = 1 - iou_matrix
        row_indices, col_indices = linear_sum_assignment(cost_matrix)

        # Filter matches by IoU threshold
        matched_pairs = []
        matched_rows = set()
        matched_cols = set()

        for i, j in zip(row_indices, col_indices):
            if iou_matrix[i, j] >= self.iou_threshold:
                # Also check if damage types match
                if detections1['classes'][i] == detections2['classes'][j]:
                    matched_pairs.append((i, j, iou_matrix[i, j]))
                    matched_rows.add(i)
                    matched_cols.add(j)

        # Find unmatched damages
        unmatched_before = [i for i in range(len(boxes1)) if i not in matched_rows]
        unmatched_after = [j for j in range(len(boxes2)) if j not in matched_cols]

        return {
            'matched_pairs': matched_pairs,
            'unmatched_before': unmatched_before,
            'unmatched_after': unmatched_after,
            'iou_matrix': iou_matrix.tolist()
        }

    def analyze_damage_status(self, before_detections: Dict, after_detections: Dict) -> Dict:
        """

        Analyze damage status between before and after images



        Returns detailed analysis with case classification

        """
        matching = self.match_damages(before_detections, after_detections)

        # Extract damage information
        matched_damages = []
        for i, j, iou in matching['matched_pairs']:
            matched_damages.append({
                'type': before_detections['classes'][i],
                'confidence_before': before_detections['confidences'][i],
                'confidence_after': after_detections['confidences'][j],
                'box_before': before_detections['boxes'][i],
                'box_after': after_detections['boxes'][j],
                'iou': iou
            })

        existing_damages = []
        for i in matching['unmatched_before']:
            existing_damages.append({
                'type': before_detections['classes'][i],
                'confidence': before_detections['confidences'][i],
                'box': before_detections['boxes'][i]
            })

        new_damages = []
        for j in matching['unmatched_after']:
            new_damages.append({
                'type': after_detections['classes'][j],
                'confidence': after_detections['confidences'][j],
                'box': after_detections['boxes'][j]
            })

        # Determine case
        case = self._determine_case(matched_damages, existing_damages, new_damages)

        return {
            'case': case['type'],
            'message': case['message'],
            'matched_damages': matched_damages,
            'repaired_damages': existing_damages,  # Damages that were there before but not after
            'new_damages': new_damages,
            'statistics': {
                'total_before': len(before_detections['boxes']),
                'total_after': len(after_detections['boxes']),
                'matched': len(matched_damages),
                'repaired': len(existing_damages),
                'new': len(new_damages)
            }
        }

    def _determine_case(self, matched: List, repaired: List, new: List) -> Dict:
        """Determine which case the comparison falls into"""

        # Case 3: Happy case - no damages at all
        if len(matched) == 0 and len(repaired) == 0 and len(new) == 0:
            return {
                'type': 'CASE_3_SUCCESS',
                'message': 'Successful delivery - No damage detected'
            }

        # Case 1: Existing damages remain (with or without repairs/new damages)
        if len(matched) > 0 and len(new) == 0:
            return {
                'type': 'CASE_1_EXISTING',
                'message': 'Error from the beginning, not during the delivery process -> Delivery completed'
            }

        # Case 2: New damages detected
        if len(new) > 0:
            return {
                'type': 'CASE_2_NEW_DAMAGE',
                'message': 'Delivery Defect - New Damage Discovered'
            }

        # Special case: All damages repaired
        if len(repaired) > 0 and len(new) == 0 and len(matched) == 0:
            return {
                'type': 'CASE_REPAIRED',
                'message': 'All damage repaired - Vehicle delivered successfully'
            }

        return {
            'type': 'CASE_UNKNOWN',
            'message': 'Status Undetermined'
        }