Spaces:
Running
Running
| import base64 | |
| import json | |
| import mimetypes | |
| import os | |
| import uuid | |
| from io import BytesIO | |
| from typing import Optional | |
| import requests | |
| from dotenv import load_dotenv | |
| from huggingface_hub import InferenceClient | |
| from PIL import Image | |
| from transformers import AutoProcessor | |
| from smolagents import Tool, tool | |
| load_dotenv(override=True) | |
| idefics_processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-chatty") | |
| def process_images_and_text(image_path, query, client): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image"}, | |
| {"type": "text", "text": query}, | |
| ], | |
| }, | |
| ] | |
| prompt_with_template = idefics_processor.apply_chat_template(messages, add_generation_prompt=True) | |
| # load images from local directory | |
| # encode images to strings which can be sent to the endpoint | |
| def encode_local_image(image_path): | |
| # load image | |
| image = Image.open(image_path).convert("RGB") | |
| # Convert the image to a base64 string | |
| buffer = BytesIO() | |
| image.save(buffer, format="JPEG") # Use the appropriate format (e.g., JPEG, PNG) | |
| base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8") | |
| # add string formatting required by the endpoint | |
| image_string = f"data:image/jpeg;base64,{base64_image}" | |
| return image_string | |
| image_string = encode_local_image(image_path) | |
| prompt_with_images = prompt_with_template.replace("<image>", " ").format(image_string) | |
| payload = { | |
| "inputs": prompt_with_images, | |
| "parameters": { | |
| "return_full_text": False, | |
| "max_new_tokens": 200, | |
| }, | |
| } | |
| return json.loads(client.post(json=payload).decode())[0] | |
| # Function to encode the image | |
| def encode_image(image_path): | |
| if image_path.startswith("http"): | |
| user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" | |
| request_kwargs = { | |
| "headers": {"User-Agent": user_agent}, | |
| "stream": True, | |
| } | |
| # Send a HTTP request to the URL | |
| response = requests.get(image_path, **request_kwargs) | |
| response.raise_for_status() | |
| content_type = response.headers.get("content-type", "") | |
| extension = mimetypes.guess_extension(content_type) | |
| if extension is None: | |
| extension = ".download" | |
| fname = str(uuid.uuid4()) + extension | |
| download_path = os.path.abspath(os.path.join("downloads", fname)) | |
| with open(download_path, "wb") as fh: | |
| for chunk in response.iter_content(chunk_size=512): | |
| fh.write(chunk) | |
| image_path = download_path | |
| with open(image_path, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode("utf-8") | |
| headers = {"Content-Type": "application/json", "Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"} | |
| def resize_image(image_path): | |
| img = Image.open(image_path) | |
| width, height = img.size | |
| img = img.resize((int(width / 2), int(height / 2))) | |
| new_image_path = f"resized_{image_path}" | |
| img.save(new_image_path) | |
| return new_image_path | |
| class VisualQATool(Tool): | |
| name = "visualizer" | |
| description = "A tool that can answer questions about attached images." | |
| inputs = { | |
| "image_path": { | |
| "description": "The path to the image on which to answer the question", | |
| "type": "string", | |
| }, | |
| "question": {"description": "the question to answer", "type": "string", "nullable": True}, | |
| } | |
| output_type = "string" | |
| client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty") | |
| def forward(self, image_path: str, question: Optional[str] = None) -> str: | |
| output = "" | |
| add_note = False | |
| if not question: | |
| add_note = True | |
| question = "Please write a detailed caption for this image." | |
| try: | |
| output = process_images_and_text(image_path, question, self.client) | |
| except Exception as e: | |
| print(e) | |
| if "Payload Too Large" in str(e): | |
| new_image_path = resize_image(image_path) | |
| output = process_images_and_text(new_image_path, question, self.client) | |
| if add_note: | |
| output = ( | |
| f"You did not provide a particular question, so here is a detailed caption for the image: {output}" | |
| ) | |
| return output | |
| def visualizer(image_path: str, question: Optional[str] = None) -> str: | |
| """A tool that can answer questions about attached images. | |
| Args: | |
| image_path: The path to the image on which to answer the question. This should be a local path to downloaded image. | |
| question: The question to answer. | |
| """ | |
| add_note = False | |
| if not question: | |
| add_note = True | |
| question = "Please write a detailed caption for this image." | |
| if not isinstance(image_path, str): | |
| raise Exception("You should provide at least `image_path` string argument to this tool!") | |
| mime_type, _ = mimetypes.guess_type(image_path) | |
| base64_image = encode_image(image_path) | |
| payload = { | |
| "model": "gpt-4o", | |
| "messages": [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": question}, | |
| {"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}}, | |
| ], | |
| } | |
| ], | |
| "max_tokens": 1000, | |
| } | |
| response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) | |
| try: | |
| output = response.json()["choices"][0]["message"]["content"] | |
| except Exception: | |
| raise Exception(f"Response format unexpected: {response.json()}") | |
| if add_note: | |
| output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}" | |
| return output | |