Upload run_eval.py
Browse files- run_eval.py +282 -0
run_eval.py
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
import datetime
|
| 18 |
+
import json
|
| 19 |
+
import time
|
| 20 |
+
import warnings
|
| 21 |
+
from logging import getLogger
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
from typing import Dict, List
|
| 24 |
+
|
| 25 |
+
import torch
|
| 26 |
+
from tqdm import tqdm
|
| 27 |
+
|
| 28 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 29 |
+
from utils import (
|
| 30 |
+
calculate_bleu,
|
| 31 |
+
calculate_rouge,
|
| 32 |
+
chunks,
|
| 33 |
+
parse_numeric_n_bool_cl_kwargs,
|
| 34 |
+
use_task_specific_params,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
from evaluate_gpt import gpt_eval
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = getLogger(__name__)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def generate_summaries_or_translations(
|
| 47 |
+
examples: List[str],
|
| 48 |
+
out_file: str,
|
| 49 |
+
model_name: str,
|
| 50 |
+
batch_size: int = 8,
|
| 51 |
+
device: str = DEFAULT_DEVICE,
|
| 52 |
+
fp16=False,
|
| 53 |
+
task="summarization",
|
| 54 |
+
prefix=None,
|
| 55 |
+
**generate_kwargs,
|
| 56 |
+
) -> Dict:
|
| 57 |
+
"""Save model.generate results to <out_file>, and return how long it took."""
|
| 58 |
+
fout = Path(out_file).open("w", encoding="utf-8")
|
| 59 |
+
model_name = str(model_name)
|
| 60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
| 61 |
+
if fp16:
|
| 62 |
+
model = model.half()
|
| 63 |
+
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 65 |
+
logger.info(
|
| 66 |
+
f"Inferred tokenizer type: {tokenizer.__class__}"
|
| 67 |
+
) # if this is wrong, check config.model_type.
|
| 68 |
+
|
| 69 |
+
start_time = time.time()
|
| 70 |
+
# update config with task specific params
|
| 71 |
+
use_task_specific_params(model, task)
|
| 72 |
+
if prefix is None:
|
| 73 |
+
prefix = prefix or getattr(model.config, "prefix", "") or ""
|
| 74 |
+
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
|
| 75 |
+
examples_chunk = [prefix + text for text in examples_chunk]
|
| 76 |
+
batch = tokenizer(
|
| 77 |
+
examples_chunk, return_tensors="pt", truncation=True, padding="longest"
|
| 78 |
+
).to(device)
|
| 79 |
+
summaries = model.generate(
|
| 80 |
+
input_ids=batch.input_ids,
|
| 81 |
+
attention_mask=batch.attention_mask,
|
| 82 |
+
**generate_kwargs,
|
| 83 |
+
)
|
| 84 |
+
dec = tokenizer.batch_decode(
|
| 85 |
+
summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 86 |
+
)
|
| 87 |
+
for hypothesis in dec:
|
| 88 |
+
fout.write(hypothesis + "\n")
|
| 89 |
+
fout.flush()
|
| 90 |
+
fout.close()
|
| 91 |
+
runtime = int(time.time() - start_time) # seconds
|
| 92 |
+
n_obs = len(examples)
|
| 93 |
+
return dict(
|
| 94 |
+
n_obs=n_obs, runtime=runtime, seconds_per_sample=round(runtime / n_obs, 4)
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def datetime_now():
|
| 99 |
+
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def run_generate(
|
| 103 |
+
verbose=True,
|
| 104 |
+
model_name_path=None,
|
| 105 |
+
src_txt=None,
|
| 106 |
+
tar_txt=None,
|
| 107 |
+
gen_path=None,
|
| 108 |
+
scor_path=None,
|
| 109 |
+
batch_size=None,
|
| 110 |
+
):
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
Takes input text, generates output, and then using reference calculates the BLEU scores.
|
| 114 |
+
|
| 115 |
+
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
a tuple: ``(scores, params}``
|
| 122 |
+
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}``
|
| 123 |
+
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}``
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
parser = argparse.ArgumentParser()
|
| 127 |
+
parser.add_argument(
|
| 128 |
+
"--model_name",
|
| 129 |
+
type=str,
|
| 130 |
+
required=False,
|
| 131 |
+
help="like facebook/bart-large-cnn,t5-base, etc.",
|
| 132 |
+
)
|
| 133 |
+
parser.add_argument(
|
| 134 |
+
"--input_path", type=str, required=False, help="like cnn_dm/test.source"
|
| 135 |
+
)
|
| 136 |
+
parser.add_argument(
|
| 137 |
+
"--save_path", type=str, required=False, help="where to save summaries"
|
| 138 |
+
)
|
| 139 |
+
parser.add_argument(
|
| 140 |
+
"--reference_path", type=str, required=False, help="like cnn_dm/test.target"
|
| 141 |
+
)
|
| 142 |
+
parser.add_argument(
|
| 143 |
+
"--score_path",
|
| 144 |
+
type=str,
|
| 145 |
+
required=False,
|
| 146 |
+
default="metrics.json",
|
| 147 |
+
help="where to save metrics",
|
| 148 |
+
)
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--device",
|
| 151 |
+
type=str,
|
| 152 |
+
required=False,
|
| 153 |
+
default=DEFAULT_DEVICE,
|
| 154 |
+
help="cuda, cuda:1, cpu etc.",
|
| 155 |
+
)
|
| 156 |
+
parser.add_argument(
|
| 157 |
+
"--prefix",
|
| 158 |
+
type=str,
|
| 159 |
+
required=False,
|
| 160 |
+
default=None,
|
| 161 |
+
help="will be added to the begininng of src examples",
|
| 162 |
+
)
|
| 163 |
+
parser.add_argument(
|
| 164 |
+
"--task",
|
| 165 |
+
type=str,
|
| 166 |
+
default="summarization",
|
| 167 |
+
help="used for task_specific_params + metrics",
|
| 168 |
+
)
|
| 169 |
+
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
|
| 170 |
+
parser.add_argument(
|
| 171 |
+
"--n_obs",
|
| 172 |
+
type=int,
|
| 173 |
+
default=-1,
|
| 174 |
+
required=False,
|
| 175 |
+
help="How many observations. Defaults to all.",
|
| 176 |
+
)
|
| 177 |
+
parser.add_argument("--fp16", action="store_true")
|
| 178 |
+
parser.add_argument(
|
| 179 |
+
"--dump-args",
|
| 180 |
+
action="store_true",
|
| 181 |
+
help="print the custom hparams with the results",
|
| 182 |
+
)
|
| 183 |
+
parser.add_argument(
|
| 184 |
+
"--info",
|
| 185 |
+
nargs="?",
|
| 186 |
+
type=str,
|
| 187 |
+
const=datetime_now(),
|
| 188 |
+
help="use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g. lang=en-ru. If no value is passed, the current datetime string will be used.",
|
| 189 |
+
)
|
| 190 |
+
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
|
| 191 |
+
args, rest = parser.parse_known_args()
|
| 192 |
+
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
|
| 193 |
+
if model_name_path:
|
| 194 |
+
args.model_name = model_name_path
|
| 195 |
+
|
| 196 |
+
if src_txt:
|
| 197 |
+
args.input_path = src_txt
|
| 198 |
+
|
| 199 |
+
if tar_txt:
|
| 200 |
+
args.reference_path = tar_txt
|
| 201 |
+
|
| 202 |
+
if batch_size:
|
| 203 |
+
args.bs = batch_size
|
| 204 |
+
|
| 205 |
+
if gen_path:
|
| 206 |
+
args.save_path = gen_path
|
| 207 |
+
|
| 208 |
+
if scor_path:
|
| 209 |
+
args.score_path = scor_path
|
| 210 |
+
|
| 211 |
+
if args.model_name[-3:] == 'gpt':
|
| 212 |
+
gpt_eval(
|
| 213 |
+
model_name_path=args.model_name,
|
| 214 |
+
src_txt=args.input_path,
|
| 215 |
+
tar_txt=args.reference_path,
|
| 216 |
+
gen_path=args.save_path,
|
| 217 |
+
scor_path=args.score_path,
|
| 218 |
+
batch_size=args.bs
|
| 219 |
+
)
|
| 220 |
+
return None
|
| 221 |
+
|
| 222 |
+
if parsed_args and verbose:
|
| 223 |
+
print(f"parsed the following generate kwargs: {parsed_args}")
|
| 224 |
+
examples = [
|
| 225 |
+
" " + x.rstrip() if "t5" in args.model_name else x.rstrip()
|
| 226 |
+
for x in open(args.input_path).readlines()
|
| 227 |
+
]
|
| 228 |
+
if args.n_obs > 0:
|
| 229 |
+
examples = examples[: args.n_obs]
|
| 230 |
+
Path(args.save_path).parent.mkdir(exist_ok=True)
|
| 231 |
+
|
| 232 |
+
if args.reference_path is None and Path(args.score_path).exists():
|
| 233 |
+
warnings.warn(
|
| 234 |
+
f"score_path {args.score_path} will be overwritten unless you type ctrl-c."
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if args.device == "cpu" and args.fp16:
|
| 238 |
+
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
|
| 239 |
+
raise ValueError("Can't mix --fp16 and --device cpu")
|
| 240 |
+
|
| 241 |
+
runtime_metrics = generate_summaries_or_translations(
|
| 242 |
+
examples,
|
| 243 |
+
args.save_path,
|
| 244 |
+
args.model_name,
|
| 245 |
+
batch_size=args.bs,
|
| 246 |
+
device=args.device,
|
| 247 |
+
fp16=args.fp16,
|
| 248 |
+
task=args.task,
|
| 249 |
+
prefix=args.prefix,
|
| 250 |
+
**parsed_args,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
if args.reference_path is None:
|
| 254 |
+
return {}
|
| 255 |
+
|
| 256 |
+
# Compute scores
|
| 257 |
+
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
|
| 258 |
+
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
|
| 259 |
+
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][
|
| 260 |
+
: len(output_lns)
|
| 261 |
+
]
|
| 262 |
+
scores: dict = score_fn(output_lns, reference_lns)
|
| 263 |
+
scores.update(runtime_metrics)
|
| 264 |
+
|
| 265 |
+
if args.dump_args:
|
| 266 |
+
scores.update(parsed_args)
|
| 267 |
+
if args.info:
|
| 268 |
+
scores["info"] = args.info
|
| 269 |
+
|
| 270 |
+
if verbose:
|
| 271 |
+
print(scores)
|
| 272 |
+
|
| 273 |
+
if args.score_path is not None:
|
| 274 |
+
json.dump(scores, open(args.score_path, "w"))
|
| 275 |
+
|
| 276 |
+
return scores
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
if __name__ == "__main__":
|
| 280 |
+
# Usage for MT:
|
| 281 |
+
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
|
| 282 |
+
run_generate(verbose=True)
|