Spaces:
Runtime error
Runtime error
Commit
·
8c482b3
1
Parent(s):
b863a7a
support GroundingDINO and segment-anything
Browse files- app.py +5 -0
- requirements.txt +28 -28
- visual_foundation_models.py +395 -157
app.py
CHANGED
|
@@ -87,6 +87,11 @@ VISUAL_CHATGPT_SUFFIX_CN = """你对文件名的正确性非常严格,而且
|
|
| 87 |
Thought: Do I need to use a tool? {agent_scratchpad}
|
| 88 |
"""
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
from visual_foundation_models import *
|
| 91 |
from langchain.agents.initialize import initialize_agent
|
| 92 |
from langchain.agents.tools import Tool
|
|
|
|
| 87 |
Thought: Do I need to use a tool? {agent_scratchpad}
|
| 88 |
"""
|
| 89 |
|
| 90 |
+
import os
|
| 91 |
+
|
| 92 |
+
os.system('pip install git+https://github.com/IDEA-Research/GroundingDINO.git')
|
| 93 |
+
os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
|
| 94 |
+
|
| 95 |
from visual_foundation_models import *
|
| 96 |
from langchain.agents.initialize import initialize_agent
|
| 97 |
from langchain.agents.tools import Tool
|
requirements.txt
CHANGED
|
@@ -1,32 +1,32 @@
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
-
torch==1.12.1
|
| 3 |
-
torchvision==0.13.1
|
| 4 |
-
numpy==1.23.1
|
| 5 |
-
transformers==4.26.1
|
| 6 |
-
albumentations==1.3.0
|
| 7 |
-
opencv-contrib-python==4.3.0.36
|
| 8 |
-
imageio==2.9.0
|
| 9 |
-
imageio-ffmpeg==0.4.2
|
| 10 |
-
pytorch-lightning==1.5.0
|
| 11 |
-
omegaconf==2.1.1
|
| 12 |
-
test-tube>=0.7.5
|
| 13 |
-
streamlit==1.12.1
|
| 14 |
-
einops==0.3.0
|
| 15 |
-
webdataset==0.2.5
|
| 16 |
-
kornia==0.6
|
| 17 |
-
open_clip_torch==2.0.2
|
| 18 |
-
invisible-watermark>=0.1.5
|
| 19 |
-
streamlit-drawable-canvas==0.8.0
|
| 20 |
-
torchmetrics==0.6.0
|
| 21 |
-
timm==0.6.12
|
| 22 |
-
addict==2.4.0
|
| 23 |
-
yapf==0.32.0
|
| 24 |
-
prettytable==3.6.0
|
| 25 |
-
safetensors==0.2.7
|
| 26 |
-
basicsr==1.4.2
|
| 27 |
langchain==0.0.101
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
openai
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
langchain==0.0.101
|
| 3 |
+
torch==1.13.1
|
| 4 |
+
torchvision==0.14.1
|
| 5 |
+
wget==3.2
|
| 6 |
+
accelerate
|
| 7 |
+
addict
|
| 8 |
+
albumentations
|
| 9 |
+
basicsr
|
| 10 |
+
controlnet-aux
|
| 11 |
+
diffusers
|
| 12 |
+
einops
|
| 13 |
gradio
|
| 14 |
+
imageio
|
| 15 |
+
imageio-ffmpeg
|
| 16 |
+
invisible-watermark
|
| 17 |
+
kornia
|
| 18 |
+
numpy
|
| 19 |
+
omegaconf
|
| 20 |
+
open_clip_torch
|
| 21 |
openai
|
| 22 |
+
opencv-python
|
| 23 |
+
prettytable
|
| 24 |
+
safetensors
|
| 25 |
+
streamlit
|
| 26 |
+
test-tube
|
| 27 |
+
timm
|
| 28 |
+
torchmetrics
|
| 29 |
+
transformers
|
| 30 |
+
webdataset
|
| 31 |
+
yapf
|
| 32 |
+
|
visual_foundation_models.py
CHANGED
|
@@ -19,6 +19,18 @@ import math
|
|
| 19 |
|
| 20 |
from langchain.llms.openai import OpenAI
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def prompts(name, description):
|
| 23 |
def decorator(func):
|
| 24 |
func.name = name
|
|
@@ -101,76 +113,6 @@ def get_new_image_name(org_img_name, func_name="update"):
|
|
| 101 |
return os.path.join(head, new_file_name)
|
| 102 |
|
| 103 |
|
| 104 |
-
class MaskFormer:
|
| 105 |
-
def __init__(self, device):
|
| 106 |
-
print(f"Initializing MaskFormer to {device}")
|
| 107 |
-
self.device = device
|
| 108 |
-
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
| 109 |
-
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
|
| 110 |
-
|
| 111 |
-
def inference(self, image_path, text):
|
| 112 |
-
threshold = 0.5
|
| 113 |
-
min_area = 0.02
|
| 114 |
-
padding = 20
|
| 115 |
-
original_image = Image.open(image_path)
|
| 116 |
-
image = original_image.resize((512, 512))
|
| 117 |
-
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device)
|
| 118 |
-
with torch.no_grad():
|
| 119 |
-
outputs = self.model(**inputs)
|
| 120 |
-
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
|
| 121 |
-
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
|
| 122 |
-
if area_ratio < min_area:
|
| 123 |
-
return None
|
| 124 |
-
true_indices = np.argwhere(mask)
|
| 125 |
-
mask_array = np.zeros_like(mask, dtype=bool)
|
| 126 |
-
for idx in true_indices:
|
| 127 |
-
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
|
| 128 |
-
mask_array[padded_slice] = True
|
| 129 |
-
visual_mask = (mask_array * 255).astype(np.uint8)
|
| 130 |
-
image_mask = Image.fromarray(visual_mask)
|
| 131 |
-
return image_mask.resize(original_image.size)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
class ImageEditing:
|
| 135 |
-
def __init__(self, device):
|
| 136 |
-
print(f"Initializing ImageEditing to {device}")
|
| 137 |
-
self.device = device
|
| 138 |
-
self.mask_former = MaskFormer(device=self.device)
|
| 139 |
-
self.revision = 'fp16' if 'cuda' in device else None
|
| 140 |
-
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
| 141 |
-
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
| 142 |
-
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
|
| 143 |
-
|
| 144 |
-
@prompts(name="Remove Something From The Photo",
|
| 145 |
-
description="useful when you want to remove and object or something from the photo "
|
| 146 |
-
"from its description or location. "
|
| 147 |
-
"The input to this tool should be a comma separated string of two, "
|
| 148 |
-
"representing the image_path and the object need to be removed. ")
|
| 149 |
-
def inference_remove(self, inputs):
|
| 150 |
-
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 151 |
-
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
|
| 152 |
-
|
| 153 |
-
@prompts(name="Replace Something From The Photo",
|
| 154 |
-
description="useful when you want to replace an object from the object description or "
|
| 155 |
-
"location with another object from its description. "
|
| 156 |
-
"The input to this tool should be a comma separated string of three, "
|
| 157 |
-
"representing the image_path, the object to be replaced, the object to be replaced with ")
|
| 158 |
-
def inference_replace(self, inputs):
|
| 159 |
-
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
|
| 160 |
-
original_image = Image.open(image_path)
|
| 161 |
-
original_size = original_image.size
|
| 162 |
-
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
|
| 163 |
-
updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)),
|
| 164 |
-
mask_image=mask_image.resize((512, 512))).images[0]
|
| 165 |
-
updated_image_path = get_new_image_name(image_path, func_name="replace-something")
|
| 166 |
-
updated_image = updated_image.resize(original_size)
|
| 167 |
-
updated_image.save(updated_image_path)
|
| 168 |
-
print(
|
| 169 |
-
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
|
| 170 |
-
f"Output Image: {updated_image_path}")
|
| 171 |
-
return updated_image_path
|
| 172 |
-
|
| 173 |
-
|
| 174 |
class InstructPix2Pix:
|
| 175 |
def __init__(self, device):
|
| 176 |
print(f"Initializing InstructPix2Pix to {device}")
|
|
@@ -283,7 +225,7 @@ class CannyText2Image:
|
|
| 283 |
self.seed = -1
|
| 284 |
self.a_prompt = 'best quality, extremely detailed'
|
| 285 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 286 |
-
|
| 287 |
|
| 288 |
@prompts(name="Generate Image Condition On Canny Image",
|
| 289 |
description="useful when you want to generate a new real image from both the user description and a canny image."
|
|
@@ -340,7 +282,7 @@ class LineText2Image:
|
|
| 340 |
self.seed = -1
|
| 341 |
self.a_prompt = 'best quality, extremely detailed'
|
| 342 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 343 |
-
|
| 344 |
|
| 345 |
@prompts(name="Generate Image Condition On Line Image",
|
| 346 |
description="useful when you want to generate a new real image from both the user description "
|
|
@@ -398,7 +340,7 @@ class HedText2Image:
|
|
| 398 |
self.seed = -1
|
| 399 |
self.a_prompt = 'best quality, extremely detailed'
|
| 400 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 401 |
-
|
| 402 |
|
| 403 |
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
|
| 404 |
description="useful when you want to generate a new real image from both the user description "
|
|
@@ -456,7 +398,7 @@ class ScribbleText2Image:
|
|
| 456 |
self.seed = -1
|
| 457 |
self.a_prompt = 'best quality, extremely detailed'
|
| 458 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 459 |
-
|
| 460 |
|
| 461 |
@prompts(name="Generate Image Condition On Sketch Image",
|
| 462 |
description="useful when you want to generate a new real image from both the user description and "
|
|
@@ -512,7 +454,7 @@ class PoseText2Image:
|
|
| 512 |
self.unconditional_guidance_scale = 9.0
|
| 513 |
self.a_prompt = 'best quality, extremely detailed'
|
| 514 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 515 |
-
|
| 516 |
|
| 517 |
@prompts(name="Generate Image Condition On Pose Image",
|
| 518 |
description="useful when you want to generate a new real image from both the user description "
|
|
@@ -536,73 +478,6 @@ class PoseText2Image:
|
|
| 536 |
return updated_image_path
|
| 537 |
|
| 538 |
|
| 539 |
-
class Image2Seg:
|
| 540 |
-
def __init__(self, device):
|
| 541 |
-
print("Initializing Image2Seg")
|
| 542 |
-
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 543 |
-
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 544 |
-
self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 545 |
-
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 546 |
-
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 547 |
-
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 548 |
-
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 549 |
-
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 550 |
-
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 551 |
-
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 552 |
-
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 553 |
-
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 554 |
-
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 555 |
-
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 556 |
-
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 557 |
-
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 558 |
-
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 559 |
-
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 560 |
-
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 561 |
-
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 562 |
-
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 563 |
-
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 564 |
-
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 565 |
-
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 566 |
-
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 567 |
-
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 568 |
-
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 569 |
-
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 570 |
-
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 571 |
-
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 572 |
-
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 573 |
-
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 574 |
-
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 575 |
-
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 576 |
-
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 577 |
-
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 578 |
-
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 579 |
-
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 580 |
-
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 581 |
-
[102, 255, 0], [92, 0, 255]]
|
| 582 |
-
|
| 583 |
-
@prompts(name="Segmentation On Image",
|
| 584 |
-
description="useful when you want to detect segmentations of the image. "
|
| 585 |
-
"like: segment this image, or generate segmentations on this image, "
|
| 586 |
-
"or perform segmentation on this image. "
|
| 587 |
-
"The input to this tool should be a string, representing the image_path")
|
| 588 |
-
def inference(self, inputs):
|
| 589 |
-
image = Image.open(inputs)
|
| 590 |
-
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
|
| 591 |
-
with torch.no_grad():
|
| 592 |
-
outputs = self.image_segmentor(pixel_values)
|
| 593 |
-
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 594 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 595 |
-
palette = np.array(self.ade_palette)
|
| 596 |
-
for label, color in enumerate(palette):
|
| 597 |
-
color_seg[seg == label, :] = color
|
| 598 |
-
color_seg = color_seg.astype(np.uint8)
|
| 599 |
-
segmentation = Image.fromarray(color_seg)
|
| 600 |
-
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
| 601 |
-
segmentation.save(updated_image_path)
|
| 602 |
-
print(f"\nProcessed Image2Seg, Input Image: {inputs}, Output Pose: {updated_image_path}")
|
| 603 |
-
return updated_image_path
|
| 604 |
-
|
| 605 |
-
|
| 606 |
class SegText2Image:
|
| 607 |
def __init__(self, device):
|
| 608 |
print(f"Initializing SegText2Image to {device}")
|
|
@@ -617,7 +492,7 @@ class SegText2Image:
|
|
| 617 |
self.seed = -1
|
| 618 |
self.a_prompt = 'best quality, extremely detailed'
|
| 619 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 620 |
-
|
| 621 |
|
| 622 |
@prompts(name="Generate Image Condition On Segmentations",
|
| 623 |
description="useful when you want to generate a new real image from both the user description and segmentations. "
|
|
@@ -676,7 +551,7 @@ class DepthText2Image:
|
|
| 676 |
self.seed = -1
|
| 677 |
self.a_prompt = 'best quality, extremely detailed'
|
| 678 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 679 |
-
|
| 680 |
|
| 681 |
@prompts(name="Generate Image Condition On Depth",
|
| 682 |
description="useful when you want to generate a new real image from both the user description and depth image. "
|
|
@@ -747,7 +622,7 @@ class NormalText2Image:
|
|
| 747 |
self.seed = -1
|
| 748 |
self.a_prompt = 'best quality, extremely detailed'
|
| 749 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 750 |
-
|
| 751 |
|
| 752 |
@prompts(name="Generate Image Condition On Normal Map",
|
| 753 |
description="useful when you want to generate a new real image from both the user description and normal map. "
|
|
@@ -793,10 +668,284 @@ class VisualQuestionAnswering:
|
|
| 793 |
f"Output Answer: {answer}")
|
| 794 |
return answer
|
| 795 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 796 |
class InfinityOutPainting:
|
| 797 |
-
template_model = True
|
|
|
|
| 798 |
def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
|
| 799 |
-
|
| 800 |
self.ImageCaption = ImageCaptioning
|
| 801 |
self.ImageEditing = ImageEditing
|
| 802 |
self.ImageVQA = VisualQuestionAnswering
|
|
@@ -814,16 +963,16 @@ class InfinityOutPainting:
|
|
| 814 |
|
| 815 |
def get_BLIP_caption(self, image):
|
| 816 |
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
|
| 817 |
-
|
| 818 |
out = self.ImageCaption.model.generate(**inputs)
|
| 819 |
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
|
| 820 |
return BLIP_caption
|
| 821 |
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
|
| 828 |
def get_imagine_caption(self, image, imagine):
|
| 829 |
BLIP_caption = self.get_BLIP_caption(image)
|
|
@@ -836,14 +985,13 @@ class InfinityOutPainting:
|
|
| 836 |
f"You should make the painting as vivid and realistic as possible" \
|
| 837 |
f"You can not use words like painting or picture" \
|
| 838 |
f"and you should use no more than 50 words to describe it"
|
| 839 |
-
|
| 840 |
-
caption =
|
| 841 |
-
# caption = self.check_prompt(caption)
|
| 842 |
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
|
| 843 |
f'Prompt: {caption}')
|
| 844 |
return caption
|
| 845 |
|
| 846 |
-
def resize_image(self, image, max_size=
|
| 847 |
aspect_ratio = image.size[0] / image.size[1]
|
| 848 |
new_width = int(math.sqrt(max_size * aspect_ratio))
|
| 849 |
new_height = int(new_width / aspect_ratio)
|
|
@@ -889,4 +1037,94 @@ class InfinityOutPainting:
|
|
| 889 |
out_painted_image.save(updated_image_path)
|
| 890 |
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
|
| 891 |
f"Output Image: {updated_image_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 892 |
return updated_image_path
|
|
|
|
| 19 |
|
| 20 |
from langchain.llms.openai import OpenAI
|
| 21 |
|
| 22 |
+
# Grounding DINO
|
| 23 |
+
import groundingdino.datasets.transforms as T
|
| 24 |
+
from groundingdino.models import build_model
|
| 25 |
+
from groundingdino.util import box_ops
|
| 26 |
+
from groundingdino.util.slconfig import SLConfig
|
| 27 |
+
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
| 28 |
+
|
| 29 |
+
# segment anything
|
| 30 |
+
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
|
| 31 |
+
import matplotlib.pyplot as plt
|
| 32 |
+
import wget
|
| 33 |
+
|
| 34 |
def prompts(name, description):
|
| 35 |
def decorator(func):
|
| 36 |
func.name = name
|
|
|
|
| 113 |
return os.path.join(head, new_file_name)
|
| 114 |
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
class InstructPix2Pix:
|
| 117 |
def __init__(self, device):
|
| 118 |
print(f"Initializing InstructPix2Pix to {device}")
|
|
|
|
| 225 |
self.seed = -1
|
| 226 |
self.a_prompt = 'best quality, extremely detailed'
|
| 227 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 228 |
+
'fewer digits, cropped, worst quality, low quality'
|
| 229 |
|
| 230 |
@prompts(name="Generate Image Condition On Canny Image",
|
| 231 |
description="useful when you want to generate a new real image from both the user description and a canny image."
|
|
|
|
| 282 |
self.seed = -1
|
| 283 |
self.a_prompt = 'best quality, extremely detailed'
|
| 284 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 285 |
+
'fewer digits, cropped, worst quality, low quality'
|
| 286 |
|
| 287 |
@prompts(name="Generate Image Condition On Line Image",
|
| 288 |
description="useful when you want to generate a new real image from both the user description "
|
|
|
|
| 340 |
self.seed = -1
|
| 341 |
self.a_prompt = 'best quality, extremely detailed'
|
| 342 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 343 |
+
'fewer digits, cropped, worst quality, low quality'
|
| 344 |
|
| 345 |
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
|
| 346 |
description="useful when you want to generate a new real image from both the user description "
|
|
|
|
| 398 |
self.seed = -1
|
| 399 |
self.a_prompt = 'best quality, extremely detailed'
|
| 400 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
|
| 401 |
+
'fewer digits, cropped, worst quality, low quality'
|
| 402 |
|
| 403 |
@prompts(name="Generate Image Condition On Sketch Image",
|
| 404 |
description="useful when you want to generate a new real image from both the user description and "
|
|
|
|
| 454 |
self.unconditional_guidance_scale = 9.0
|
| 455 |
self.a_prompt = 'best quality, extremely detailed'
|
| 456 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 457 |
+
' fewer digits, cropped, worst quality, low quality'
|
| 458 |
|
| 459 |
@prompts(name="Generate Image Condition On Pose Image",
|
| 460 |
description="useful when you want to generate a new real image from both the user description "
|
|
|
|
| 478 |
return updated_image_path
|
| 479 |
|
| 480 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
class SegText2Image:
|
| 482 |
def __init__(self, device):
|
| 483 |
print(f"Initializing SegText2Image to {device}")
|
|
|
|
| 492 |
self.seed = -1
|
| 493 |
self.a_prompt = 'best quality, extremely detailed'
|
| 494 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 495 |
+
' fewer digits, cropped, worst quality, low quality'
|
| 496 |
|
| 497 |
@prompts(name="Generate Image Condition On Segmentations",
|
| 498 |
description="useful when you want to generate a new real image from both the user description and segmentations. "
|
|
|
|
| 551 |
self.seed = -1
|
| 552 |
self.a_prompt = 'best quality, extremely detailed'
|
| 553 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 554 |
+
' fewer digits, cropped, worst quality, low quality'
|
| 555 |
|
| 556 |
@prompts(name="Generate Image Condition On Depth",
|
| 557 |
description="useful when you want to generate a new real image from both the user description and depth image. "
|
|
|
|
| 622 |
self.seed = -1
|
| 623 |
self.a_prompt = 'best quality, extremely detailed'
|
| 624 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
|
| 625 |
+
' fewer digits, cropped, worst quality, low quality'
|
| 626 |
|
| 627 |
@prompts(name="Generate Image Condition On Normal Map",
|
| 628 |
description="useful when you want to generate a new real image from both the user description and normal map. "
|
|
|
|
| 668 |
f"Output Answer: {answer}")
|
| 669 |
return answer
|
| 670 |
|
| 671 |
+
|
| 672 |
+
class Segmenting:
|
| 673 |
+
def __init__(self, device):
|
| 674 |
+
print(f"Inintializing Segmentation to {device}")
|
| 675 |
+
self.device = device
|
| 676 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
| 677 |
+
self.model_checkpoint_path = os.path.join("checkpoints", "sam")
|
| 678 |
+
|
| 679 |
+
self.download_parameters()
|
| 680 |
+
self.sam = build_sam(checkpoint=self.model_checkpoint_path).to(device)
|
| 681 |
+
self.sam_predictor = SamPredictor(self.sam)
|
| 682 |
+
self.mask_generator = SamAutomaticMaskGenerator(self.sam)
|
| 683 |
+
|
| 684 |
+
def download_parameters(self):
|
| 685 |
+
url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
| 686 |
+
if not os.path.exists(self.model_checkpoint_path):
|
| 687 |
+
wget.download(url, out=self.model_checkpoint_path)
|
| 688 |
+
|
| 689 |
+
def show_mask(self, mask, ax, random_color=False):
|
| 690 |
+
if random_color:
|
| 691 |
+
color = np.concatenate([np.random.random(3), np.array([1])], axis=0)
|
| 692 |
+
else:
|
| 693 |
+
color = np.array([30 / 255, 144 / 255, 255 / 255, 1])
|
| 694 |
+
h, w = mask.shape[-2:]
|
| 695 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 696 |
+
ax.imshow(mask_image)
|
| 697 |
+
|
| 698 |
+
def show_box(self, box, ax, label):
|
| 699 |
+
x0, y0 = box[0], box[1]
|
| 700 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
| 701 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
|
| 702 |
+
ax.text(x0, y0, label)
|
| 703 |
+
|
| 704 |
+
def get_mask_with_boxes(self, image_pil, image, boxes_filt):
|
| 705 |
+
|
| 706 |
+
size = image_pil.size
|
| 707 |
+
H, W = size[1], size[0]
|
| 708 |
+
for i in range(boxes_filt.size(0)):
|
| 709 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
| 710 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
| 711 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
| 712 |
+
|
| 713 |
+
boxes_filt = boxes_filt.cpu()
|
| 714 |
+
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device)
|
| 715 |
+
|
| 716 |
+
masks, _, _ = self.sam_predictor.predict_torch(
|
| 717 |
+
point_coords=None,
|
| 718 |
+
point_labels=None,
|
| 719 |
+
boxes=transformed_boxes.to(self.device),
|
| 720 |
+
multimask_output=False,
|
| 721 |
+
)
|
| 722 |
+
return masks
|
| 723 |
+
|
| 724 |
+
def segment_image_with_boxes(self, image_pil, image_path, boxes_filt, pred_phrases):
|
| 725 |
+
|
| 726 |
+
image = cv2.imread(image_path)
|
| 727 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 728 |
+
self.sam_predictor.set_image(image)
|
| 729 |
+
|
| 730 |
+
masks = self.get_mask_with_boxes(image_pil, image, boxes_filt)
|
| 731 |
+
|
| 732 |
+
# draw output image
|
| 733 |
+
plt.figure(figsize=(10, 10))
|
| 734 |
+
plt.imshow(image)
|
| 735 |
+
for mask in masks:
|
| 736 |
+
self.show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
| 737 |
+
|
| 738 |
+
updated_image_path = get_new_image_name(image_path, func_name="segmentation")
|
| 739 |
+
plt.axis('off')
|
| 740 |
+
plt.savefig(
|
| 741 |
+
updated_image_path,
|
| 742 |
+
bbox_inches="tight", dpi=300, pad_inches=0.0
|
| 743 |
+
)
|
| 744 |
+
return updated_image_path
|
| 745 |
+
|
| 746 |
+
@prompts(name="Segment the Image",
|
| 747 |
+
description="useful when you want to segment all the part of the image, but not segment a certain object."
|
| 748 |
+
"like: segment all the object in this image, or generate segmentations on this image, "
|
| 749 |
+
"or segment the image,"
|
| 750 |
+
"or perform segmentation on this image, "
|
| 751 |
+
"or segment all the object in this image."
|
| 752 |
+
"The input to this tool should be a string, representing the image_path")
|
| 753 |
+
def inference_all(self, image_path):
|
| 754 |
+
image = cv2.imread(image_path)
|
| 755 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 756 |
+
masks = self.mask_generator.generate(image)
|
| 757 |
+
plt.figure(figsize=(20, 20))
|
| 758 |
+
plt.imshow(image)
|
| 759 |
+
if len(masks) == 0:
|
| 760 |
+
return
|
| 761 |
+
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
|
| 762 |
+
ax = plt.gca()
|
| 763 |
+
ax.set_autoscale_on(False)
|
| 764 |
+
polygons = []
|
| 765 |
+
color = []
|
| 766 |
+
for ann in sorted_anns:
|
| 767 |
+
m = ann['segmentation']
|
| 768 |
+
img = np.ones((m.shape[0], m.shape[1], 3))
|
| 769 |
+
color_mask = np.random.random((1, 3)).tolist()[0]
|
| 770 |
+
for i in range(3):
|
| 771 |
+
img[:, :, i] = color_mask[i]
|
| 772 |
+
ax.imshow(np.dstack((img, m)))
|
| 773 |
+
|
| 774 |
+
updated_image_path = get_new_image_name(image_path, func_name="segment-image")
|
| 775 |
+
plt.axis('off')
|
| 776 |
+
plt.savefig(
|
| 777 |
+
updated_image_path,
|
| 778 |
+
bbox_inches="tight", dpi=300, pad_inches=0.0
|
| 779 |
+
)
|
| 780 |
+
return updated_image_path
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
class Text2Box:
|
| 784 |
+
def __init__(self, device):
|
| 785 |
+
print(f"Initializing ObjectDetection to {device}")
|
| 786 |
+
self.device = device
|
| 787 |
+
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
| 788 |
+
self.model_checkpoint_path = os.path.join("checkpoints", "groundingdino")
|
| 789 |
+
self.model_config_path = os.path.join("checkpoints", "grounding_config.py")
|
| 790 |
+
self.download_parameters()
|
| 791 |
+
self.box_threshold = 0.3
|
| 792 |
+
self.text_threshold = 0.25
|
| 793 |
+
self.grounding = (self.load_model()).to(self.device)
|
| 794 |
+
|
| 795 |
+
def download_parameters(self):
|
| 796 |
+
url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
|
| 797 |
+
if not os.path.exists(self.model_checkpoint_path):
|
| 798 |
+
wget.download(url, out=self.model_checkpoint_path)
|
| 799 |
+
config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
| 800 |
+
if not os.path.exists(self.model_config_path):
|
| 801 |
+
wget.download(config_url, out=self.model_config_path)
|
| 802 |
+
|
| 803 |
+
def load_image(self, image_path):
|
| 804 |
+
# load image
|
| 805 |
+
image_pil = Image.open(image_path).convert("RGB") # load image
|
| 806 |
+
|
| 807 |
+
transform = T.Compose(
|
| 808 |
+
[
|
| 809 |
+
T.RandomResize([512], max_size=1333),
|
| 810 |
+
T.ToTensor(),
|
| 811 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 812 |
+
]
|
| 813 |
+
)
|
| 814 |
+
image, _ = transform(image_pil, None) # 3, h, w
|
| 815 |
+
return image_pil, image
|
| 816 |
+
|
| 817 |
+
def load_model(self):
|
| 818 |
+
args = SLConfig.fromfile(self.model_config_path)
|
| 819 |
+
args.device = self.device
|
| 820 |
+
model = build_model(args)
|
| 821 |
+
checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
|
| 822 |
+
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
| 823 |
+
print(load_res)
|
| 824 |
+
_ = model.eval()
|
| 825 |
+
return model
|
| 826 |
+
|
| 827 |
+
def get_grounding_boxes(self, image, caption, with_logits=True):
|
| 828 |
+
caption = caption.lower()
|
| 829 |
+
caption = caption.strip()
|
| 830 |
+
if not caption.endswith("."):
|
| 831 |
+
caption = caption + "."
|
| 832 |
+
image = image.to(self.device)
|
| 833 |
+
with torch.no_grad():
|
| 834 |
+
outputs = self.grounding(image[None], captions=[caption])
|
| 835 |
+
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
| 836 |
+
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
| 837 |
+
logits.shape[0]
|
| 838 |
+
|
| 839 |
+
# filter output
|
| 840 |
+
logits_filt = logits.clone()
|
| 841 |
+
boxes_filt = boxes.clone()
|
| 842 |
+
filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
|
| 843 |
+
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
| 844 |
+
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
| 845 |
+
logits_filt.shape[0]
|
| 846 |
+
|
| 847 |
+
# get phrase
|
| 848 |
+
tokenlizer = self.grounding.tokenizer
|
| 849 |
+
tokenized = tokenlizer(caption)
|
| 850 |
+
# build pred
|
| 851 |
+
pred_phrases = []
|
| 852 |
+
for logit, box in zip(logits_filt, boxes_filt):
|
| 853 |
+
pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
|
| 854 |
+
if with_logits:
|
| 855 |
+
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
| 856 |
+
else:
|
| 857 |
+
pred_phrases.append(pred_phrase)
|
| 858 |
+
|
| 859 |
+
return boxes_filt, pred_phrases
|
| 860 |
+
|
| 861 |
+
def plot_boxes_to_image(self, image_pil, tgt):
|
| 862 |
+
H, W = tgt["size"]
|
| 863 |
+
boxes = tgt["boxes"]
|
| 864 |
+
labels = tgt["labels"]
|
| 865 |
+
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
| 866 |
+
|
| 867 |
+
draw = ImageDraw.Draw(image_pil)
|
| 868 |
+
mask = Image.new("L", image_pil.size, 0)
|
| 869 |
+
mask_draw = ImageDraw.Draw(mask)
|
| 870 |
+
|
| 871 |
+
# draw boxes and masks
|
| 872 |
+
for box, label in zip(boxes, labels):
|
| 873 |
+
# from 0..1 to 0..W, 0..H
|
| 874 |
+
box = box * torch.Tensor([W, H, W, H])
|
| 875 |
+
# from xywh to xyxy
|
| 876 |
+
box[:2] -= box[2:] / 2
|
| 877 |
+
box[2:] += box[:2]
|
| 878 |
+
# random color
|
| 879 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
| 880 |
+
# draw
|
| 881 |
+
x0, y0, x1, y1 = box
|
| 882 |
+
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
| 883 |
+
|
| 884 |
+
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
| 885 |
+
# draw.text((x0, y0), str(label), fill=color)
|
| 886 |
+
|
| 887 |
+
font = ImageFont.load_default()
|
| 888 |
+
if hasattr(font, "getbbox"):
|
| 889 |
+
bbox = draw.textbbox((x0, y0), str(label), font)
|
| 890 |
+
else:
|
| 891 |
+
w, h = draw.textsize(str(label), font)
|
| 892 |
+
bbox = (x0, y0, w + x0, y0 + h)
|
| 893 |
+
# bbox = draw.textbbox((x0, y0), str(label))
|
| 894 |
+
draw.rectangle(bbox, fill=color)
|
| 895 |
+
draw.text((x0, y0), str(label), fill="white")
|
| 896 |
+
|
| 897 |
+
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2)
|
| 898 |
+
|
| 899 |
+
return image_pil, mask
|
| 900 |
+
|
| 901 |
+
@prompts(name="Detect the Give Object",
|
| 902 |
+
description="useful when you only want to detect or find out given objects in the picture"
|
| 903 |
+
"The input to this tool should be a comma separated string of two, "
|
| 904 |
+
"representing the image_path, the text description of the object to be found")
|
| 905 |
+
def inference(self, inputs):
|
| 906 |
+
image_path, det_prompt = inputs.split(",")
|
| 907 |
+
print(f"image_path={image_path}, text_prompt={det_prompt}")
|
| 908 |
+
image_pil, image = self.load_image(image_path)
|
| 909 |
+
|
| 910 |
+
boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt)
|
| 911 |
+
|
| 912 |
+
size = image_pil.size
|
| 913 |
+
pred_dict = {
|
| 914 |
+
"boxes": boxes_filt,
|
| 915 |
+
"size": [size[1], size[0]], # H,W
|
| 916 |
+
"labels": pred_phrases, }
|
| 917 |
+
|
| 918 |
+
image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0]
|
| 919 |
+
|
| 920 |
+
updated_image_path = get_new_image_name(image_path, func_name="detect-something")
|
| 921 |
+
updated_image = image_with_box.resize(size)
|
| 922 |
+
updated_image.save(updated_image_path)
|
| 923 |
+
print(
|
| 924 |
+
f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, "
|
| 925 |
+
f"Output Image: {updated_image_path}")
|
| 926 |
+
return updated_image_path
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
class Inpainting:
|
| 930 |
+
def __init__(self, device):
|
| 931 |
+
self.device = device
|
| 932 |
+
self.revision = 'fp16' if 'cuda' in self.device else None
|
| 933 |
+
self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32
|
| 934 |
+
|
| 935 |
+
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
| 936 |
+
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
|
| 937 |
+
|
| 938 |
+
def __call__(self, prompt, original_image, mask_image):
|
| 939 |
+
update_image = self.inpaint(prompt=prompt, image=original_image.resize((512, 512)),
|
| 940 |
+
mask_image=mask_image.resize((512, 512))).images[0]
|
| 941 |
+
return update_image
|
| 942 |
+
|
| 943 |
+
|
| 944 |
class InfinityOutPainting:
|
| 945 |
+
template_model = True # Add this line to show this is a template model.
|
| 946 |
+
|
| 947 |
def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
|
| 948 |
+
self.llm = OpenAI(temperature=0)
|
| 949 |
self.ImageCaption = ImageCaptioning
|
| 950 |
self.ImageEditing = ImageEditing
|
| 951 |
self.ImageVQA = VisualQuestionAnswering
|
|
|
|
| 963 |
|
| 964 |
def get_BLIP_caption(self, image):
|
| 965 |
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
|
| 966 |
+
self.ImageCaption.torch_dtype)
|
| 967 |
out = self.ImageCaption.model.generate(**inputs)
|
| 968 |
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
|
| 969 |
return BLIP_caption
|
| 970 |
|
| 971 |
+
def check_prompt(self, prompt):
|
| 972 |
+
check = f"Here is a paragraph with adjectives. " \
|
| 973 |
+
f"{prompt} " \
|
| 974 |
+
f"Please change all plural forms in the adjectives to singular forms. "
|
| 975 |
+
return self.llm(check)
|
| 976 |
|
| 977 |
def get_imagine_caption(self, image, imagine):
|
| 978 |
BLIP_caption = self.get_BLIP_caption(image)
|
|
|
|
| 985 |
f"You should make the painting as vivid and realistic as possible" \
|
| 986 |
f"You can not use words like painting or picture" \
|
| 987 |
f"and you should use no more than 50 words to describe it"
|
| 988 |
+
caption = self.llm(imagine_prompt) if imagine else BLIP_caption
|
| 989 |
+
caption = self.check_prompt(caption)
|
|
|
|
| 990 |
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
|
| 991 |
f'Prompt: {caption}')
|
| 992 |
return caption
|
| 993 |
|
| 994 |
+
def resize_image(self, image, max_size=1000000, multiple=8):
|
| 995 |
aspect_ratio = image.size[0] / image.size[1]
|
| 996 |
new_width = int(math.sqrt(max_size * aspect_ratio))
|
| 997 |
new_height = int(new_width / aspect_ratio)
|
|
|
|
| 1037 |
out_painted_image.save(updated_image_path)
|
| 1038 |
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
|
| 1039 |
f"Output Image: {updated_image_path}")
|
| 1040 |
+
return updated_image_path
|
| 1041 |
+
|
| 1042 |
+
|
| 1043 |
+
class ObjectSegmenting:
|
| 1044 |
+
template_model = True # Add this line to show this is a template model.
|
| 1045 |
+
|
| 1046 |
+
def __init__(self, Text2Box: Text2Box, Segmenting: Segmenting):
|
| 1047 |
+
# self.llm = OpenAI(temperature=0)
|
| 1048 |
+
self.grounding = Text2Box
|
| 1049 |
+
self.sam = Segmenting
|
| 1050 |
+
|
| 1051 |
+
@prompts(name="Segment the given object",
|
| 1052 |
+
description="useful when you only want to segment the certain objects in the picture"
|
| 1053 |
+
"according to the given text"
|
| 1054 |
+
"like: segment the cat,"
|
| 1055 |
+
"or can you segment an obeject for me"
|
| 1056 |
+
"The input to this tool should be a comma separated string of two, "
|
| 1057 |
+
"representing the image_path, the text description of the object to be found")
|
| 1058 |
+
def inference(self, inputs):
|
| 1059 |
+
image_path, det_prompt = inputs.split(",")
|
| 1060 |
+
print(f"image_path={image_path}, text_prompt={det_prompt}")
|
| 1061 |
+
image_pil, image = self.grounding.load_image(image_path)
|
| 1062 |
+
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, det_prompt)
|
| 1063 |
+
updated_image_path = self.sam.segment_image_with_boxes(image_pil, image_path, boxes_filt, pred_phrases)
|
| 1064 |
+
print(
|
| 1065 |
+
f"\nProcessed ObejectSegmenting, Input Image: {image_path}, Object to be Segment {det_prompt}, "
|
| 1066 |
+
f"Output Image: {updated_image_path}")
|
| 1067 |
+
return updated_image_path
|
| 1068 |
+
|
| 1069 |
+
|
| 1070 |
+
class ImageEditing:
|
| 1071 |
+
template_model = True
|
| 1072 |
+
|
| 1073 |
+
def __init__(self, Text2Box: Text2Box, Segmenting: Segmenting, Inpainting: Inpainting):
|
| 1074 |
+
print(f"Initializing ImageEditing")
|
| 1075 |
+
self.sam = Segmenting
|
| 1076 |
+
self.grounding = Text2Box
|
| 1077 |
+
self.inpaint = Inpainting
|
| 1078 |
+
|
| 1079 |
+
def pad_edge(self, mask, padding):
|
| 1080 |
+
# mask Tensor [H,W]
|
| 1081 |
+
mask = mask.numpy()
|
| 1082 |
+
true_indices = np.argwhere(mask)
|
| 1083 |
+
mask_array = np.zeros_like(mask, dtype=bool)
|
| 1084 |
+
for idx in true_indices:
|
| 1085 |
+
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
|
| 1086 |
+
mask_array[padded_slice] = True
|
| 1087 |
+
new_mask = (mask_array * 255).astype(np.uint8)
|
| 1088 |
+
# new_mask
|
| 1089 |
+
return new_mask
|
| 1090 |
+
|
| 1091 |
+
@prompts(name="Remove Something From The Photo",
|
| 1092 |
+
description="useful when you want to remove and object or something from the photo "
|
| 1093 |
+
"from its description or location. "
|
| 1094 |
+
"The input to this tool should be a comma separated string of two, "
|
| 1095 |
+
"representing the image_path and the object need to be removed. ")
|
| 1096 |
+
def inference_remove(self, inputs):
|
| 1097 |
+
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
| 1098 |
+
return self.inference_replace_sam(f"{image_path},{to_be_removed_txt},background")
|
| 1099 |
+
|
| 1100 |
+
@prompts(name="Replace Something From The Photo",
|
| 1101 |
+
description="useful when you want to replace an object from the object description or "
|
| 1102 |
+
"location with another object from its description. "
|
| 1103 |
+
"The input to this tool should be a comma separated string of three, "
|
| 1104 |
+
"representing the image_path, the object to be replaced, the object to be replaced with ")
|
| 1105 |
+
def inference_replace_sam(self, inputs):
|
| 1106 |
+
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
|
| 1107 |
+
|
| 1108 |
+
print(f"image_path={image_path}, to_be_replaced_txt={to_be_replaced_txt}")
|
| 1109 |
+
image_pil, image = self.grounding.load_image(image_path)
|
| 1110 |
+
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, to_be_replaced_txt)
|
| 1111 |
+
image = cv2.imread(image_path)
|
| 1112 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1113 |
+
self.sam.sam_predictor.set_image(image)
|
| 1114 |
+
masks = self.sam.get_mask_with_boxes(image_pil, image, boxes_filt)
|
| 1115 |
+
mask = torch.sum(masks, dim=0).unsqueeze(0)
|
| 1116 |
+
mask = torch.where(mask > 0, True, False)
|
| 1117 |
+
mask = mask.squeeze(0).squeeze(0).cpu() # tensor
|
| 1118 |
+
|
| 1119 |
+
mask = self.pad_edge(mask, padding=20) # numpy
|
| 1120 |
+
mask_image = Image.fromarray(mask)
|
| 1121 |
+
|
| 1122 |
+
updated_image = self.inpaint(prompt=replace_with_txt, original_image=image_pil,
|
| 1123 |
+
mask_image=mask_image)
|
| 1124 |
+
updated_image_path = get_new_image_name(image_path, func_name="replace-something")
|
| 1125 |
+
updated_image = updated_image.resize(image_pil.size)
|
| 1126 |
+
updated_image.save(updated_image_path)
|
| 1127 |
+
print(
|
| 1128 |
+
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
|
| 1129 |
+
f"Output Image: {updated_image_path}")
|
| 1130 |
return updated_image_path
|