|
from fastapi import FastAPI, File, UploadFile |
|
from fastapi.responses import JSONResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
import io |
|
from PIL import Image |
|
|
|
from preprocessing.image_preprocessing import prep_image |
|
from model_predictor import prediction |
|
|
|
app = FastAPI() |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
print("Server is running...") |
|
|
|
@app.get("/") |
|
async def root(): |
|
return JSONResponse( |
|
content={"message": "Welcome to the Food Classification API πππ₯! The server is up and running π."} |
|
) |
|
|
|
@app.post("/predict") |
|
async def predict(file: UploadFile = File(...)): |
|
try: |
|
image = Image.open(io.BytesIO(await file.read())) |
|
|
|
processed_img = prep_image(image) |
|
predictions = prediction(processed_img) |
|
|
|
return JSONResponse(content={"predictions": predictions}) |
|
|
|
except Exception as e: |
|
return JSONResponse(content={"error": str(e)}, status_code=500) |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|