File size: 2,016 Bytes
d5e322f
 
 
 
 
 
 
 
 
 
 
 
 
f2df712
d5e322f
 
 
 
 
 
 
 
500905f
d5e322f
 
 
500905f
d5e322f
37ec07c
 
 
 
 
 
 
 
 
dcb5fc8
37ec07c
 
0072cc0
c9bc296
 
 
 
 
 
 
 
 
37ec07c
d5e322f
 
 
 
37ec07c
03e9f5b
c9bc296
d5e322f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import csv, os, sys
import argparse


from keybert import KeyBERT
from sentence_transformers import SentenceTransformer


class KeyWordExtractor():

    def __init__(self):

        KWE_PRETRAINED = 'medmediani/Arabic-KW-Mdel'
        self.SEQ_LENGTH = 512
        self.MAX_KW_NGS=3
        self.NKW=3

        #self.device = torch.device('cpu')
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        
        sentence_model = SentenceTransformer(KWE_PRETRAINED)
        sentence_model.to(self.device)
        self.kw_model = KeyBERT(model=sentence_model)
        
        
        #self.kw_model.to(self.device)
        
    def _extract_by_paragraph(self, ctxt, nkws=None, max_kw_ngs=None):
        paragraphs=map(str.strip,ctxt.split("\n"))
        kws=[]
        for paragraph in paragraphs:
            if paragraph:
                kws.extend(self.kw_model.extract_keywords(paragraph, keyphrase_ngram_range=(1, max_kw_ngs),
                                                          top_n=nkws,
                                     #use_maxsum=True,nr_candidates=20, top_n=5,
                                     #use_mmr=True, 
                                          diversity=0.8,
                                                          stop_words=None)
                          )
        print("KWS=",kws,file=sys.stderr)
        kws.sort(key=lambda x: x[1],reverse=True)
        ukws=set()
        for kw,_ in kws:
            
            if len(ukws)>=nkws:
                return ukws
            ukws.add(kw)
         
        return ukws
        
    def extract(self, ctxt, nkws=None, max_kw_ngs=None):
        nkws= nkws if nkws is not None else self.NKW
        max_kw_ngs=max_kw_ngs if max_kw_ngs is not None else self.MAX_KW_NGS
        
        #Since we are taking only 512 tokens, let's do by paragraph
        kw=self._extract_by_paragraph(ctxt,nkws,max_kw_ngs)
        return ", ".join(kw)
        return ", ".join(w for w,_ in kw)