Spaces:
Runtime error
Runtime error
Charles Kabui
commited on
Commit
·
41dd156
0
Parent(s):
Initial Commit
Browse files- .DS_Store +0 -0
- .gitattributes +35 -0
- .gitignore +1 -0
- README.md +13 -0
- app.py +53 -0
- encode_sentences.py +12 -0
- notebook.ipynb +0 -0
- requirements.txt +3 -0
- samples.py +20 -0
- trained_model_random_forest.joblib +3 -0
- trained_model_stsbenchmark_bert-base-uncased/.DS_Store +0 -0
- trained_model_stsbenchmark_bert-base-uncased/1_Pooling/config.json +10 -0
- trained_model_stsbenchmark_bert-base-uncased/README.md +127 -0
- trained_model_stsbenchmark_bert-base-uncased/config.json +26 -0
- trained_model_stsbenchmark_bert-base-uncased/config_sentence_transformers.json +9 -0
- trained_model_stsbenchmark_bert-base-uncased/eval/similarity_evaluation_sts-dev_results.csv +37 -0
- trained_model_stsbenchmark_bert-base-uncased/model.safetensors +3 -0
- trained_model_stsbenchmark_bert-base-uncased/modules.json +14 -0
- trained_model_stsbenchmark_bert-base-uncased/sentence_bert_config.json +4 -0
- trained_model_stsbenchmark_bert-base-uncased/similarity_evaluation_sts-test_results.csv +5 -0
- trained_model_stsbenchmark_bert-base-uncased/special_tokens_map.json +7 -0
- trained_model_stsbenchmark_bert-base-uncased/tokenizer.json +0 -0
- trained_model_stsbenchmark_bert-base-uncased/tokenizer_config.json +55 -0
- trained_model_stsbenchmark_bert-base-uncased/vocab.txt +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Text Similarity Prediction and Analysis
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.33.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
from sentence_transformers import CrossEncoder, SentenceTransformer
|
3 |
+
import streamlit as st
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
from samples import get_samples
|
6 |
+
import textdistance
|
7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
8 |
+
from encode_sentences import encode_sentences
|
9 |
+
|
10 |
+
model_save_path = 'trained_model_stsbenchmark_bert-base-uncased'
|
11 |
+
bi_encoder = 'Bi-Encoder'
|
12 |
+
cross_encoder = 'Cross-Encoder'
|
13 |
+
levenshtein_distance = 'Levenshtein Distance'
|
14 |
+
tf_idf = 'TF-IDF'
|
15 |
+
random_forest = 'RandomForest'
|
16 |
+
title = 'Sentence Similarity with Transformers'
|
17 |
+
tfidf_vectorizer = TfidfVectorizer()
|
18 |
+
cross_encoder_trasformer = CrossEncoder(model_save_path)
|
19 |
+
bi_encoder_trasformer = SentenceTransformer(model_save_path)
|
20 |
+
random_forest_model = joblib.load('trained_model_random_forest.joblib')
|
21 |
+
@st.cache_data
|
22 |
+
def compute_similarity(sentence_1, sentence_2, comparison):
|
23 |
+
if comparison == bi_encoder:
|
24 |
+
return cosine_similarity([bi_encoder_trasformer.encode(sentence_1)], [bi_encoder_trasformer.encode(sentence_2)])[0][0]
|
25 |
+
return cross_encoder_trasformer.predict([sentence_1, sentence_2])
|
26 |
+
|
27 |
+
st.set_page_config(page_title=title, layout = 'wide', initial_sidebar_state = 'auto')
|
28 |
+
st.title(title)
|
29 |
+
st.write("This app takes two sentences and outputs their similarity score using a fine-tuned transformer model.")
|
30 |
+
|
31 |
+
# Example sentences section
|
32 |
+
test_samples = get_samples()
|
33 |
+
st.sidebar.header("Example Sentences")
|
34 |
+
example_1 = st.sidebar.radio("Sentence 1", test_samples['sentence1'].values.tolist())
|
35 |
+
example_2 = st.sidebar.radio("Sentence 2", test_samples['sentence2'].values.tolist())
|
36 |
+
|
37 |
+
# Input fields
|
38 |
+
sentence_1 = st.text_input("Enter Sentence 1:", example_1)
|
39 |
+
sentence_2 = st.text_input("Enter Sentence 2:", example_2)
|
40 |
+
comparison = st.selectbox("Comparicon:", [bi_encoder, cross_encoder, levenshtein_distance, tf_idf, random_forest])
|
41 |
+
|
42 |
+
if st.button("Compare"):
|
43 |
+
# Compute similarity
|
44 |
+
if comparison in [bi_encoder, cross_encoder]:
|
45 |
+
similarity = compute_similarity(sentence_1, sentence_2, comparison)
|
46 |
+
elif comparison == levenshtein_distance:
|
47 |
+
similarity = textdistance.levenshtein.normalized_similarity(sentence_1, sentence_2)
|
48 |
+
elif comparison == tf_idf:
|
49 |
+
similarity = cosine_similarity(tfidf_vectorizer.fit_transform([sentence_1, sentence_2]))[0][1]
|
50 |
+
elif comparison == random_forest:
|
51 |
+
similarity = random_forest_model.predict(encode_sentences(bi_encoder_trasformer, sentence_1, sentence_2))[0]
|
52 |
+
st.write(f"Similarity Score: {similarity:.4f}")
|
53 |
+
st.write("A higher score indicates greater similarity. The score ranges from 0 to 1.")
|
encode_sentences.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.preprocessing import StandardScaler
|
2 |
+
scaler = StandardScaler()
|
3 |
+
|
4 |
+
def encode_sentences(tokenizer, sentence1, sentence2):
|
5 |
+
# Encode the sentences
|
6 |
+
embedding1 = tokenizer.encode(sentence1, convert_to_tensor=True).cpu()
|
7 |
+
embedding2 = tokenizer.encode(sentence2, convert_to_tensor=True).cpu()
|
8 |
+
# Compute the absolute difference of embeddings as features
|
9 |
+
feature = abs(embedding1 - embedding2).numpy().reshape(1, -1)
|
10 |
+
# Scale features (use the same scaler as used during training)
|
11 |
+
feature_scaled = scaler.fit_transform(feature)# scaler.transform(feature)
|
12 |
+
return feature_scaled
|
notebook.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn==1.3.2
|
2 |
+
accelerate==0.28.0
|
3 |
+
sentence-transformers==2.6.1
|
samples.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
def get_samples():
|
5 |
+
dataset = load_dataset("mteb/stsbenchmark-sts")
|
6 |
+
get_where = lambda score: dataset['validation'].filter(lambda x: x['score'] == score, load_from_cache_file = False)[0]
|
7 |
+
test_samples = pd.DataFrame([
|
8 |
+
get_where(5),
|
9 |
+
get_where(4.5),
|
10 |
+
get_where(4),
|
11 |
+
get_where(3.5),
|
12 |
+
get_where(3),
|
13 |
+
get_where(2.5),
|
14 |
+
get_where(2),
|
15 |
+
get_where(1.5),
|
16 |
+
get_where(1),
|
17 |
+
get_where(0.5),
|
18 |
+
get_where(0),
|
19 |
+
], columns=['sentence1', 'sentence2', 'score'])
|
20 |
+
return test_samples
|
trained_model_random_forest.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69284946a405027ded9d5a6d0589912d42ccbe40506da21aaefcf0634c0c8f9f
|
3 |
+
size 27083201
|
trained_model_stsbenchmark_bert-base-uncased/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
trained_model_stsbenchmark_bert-base-uncased/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
trained_model_stsbenchmark_bert-base-uncased/README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+
# {MODEL_NAME}
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
+
|
16 |
+
<!--- Describe your model here -->
|
17 |
+
|
18 |
+
## Usage (Sentence-Transformers)
|
19 |
+
|
20 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U sentence-transformers
|
24 |
+
```
|
25 |
+
|
26 |
+
Then you can use the model like this:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
+
|
32 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
33 |
+
embeddings = model.encode(sentences)
|
34 |
+
print(embeddings)
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Usage (HuggingFace Transformers)
|
40 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import AutoTokenizer, AutoModel
|
44 |
+
import torch
|
45 |
+
|
46 |
+
|
47 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
+
def mean_pooling(model_output, attention_mask):
|
49 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
+
|
53 |
+
|
54 |
+
# Sentences we want sentence embeddings for
|
55 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
+
|
57 |
+
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
59 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
60 |
+
|
61 |
+
# Tokenize sentences
|
62 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
63 |
+
|
64 |
+
# Compute token embeddings
|
65 |
+
with torch.no_grad():
|
66 |
+
model_output = model(**encoded_input)
|
67 |
+
|
68 |
+
# Perform pooling. In this case, mean pooling.
|
69 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
70 |
+
|
71 |
+
print("Sentence embeddings:")
|
72 |
+
print(sentence_embeddings)
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
## Evaluation Results
|
78 |
+
|
79 |
+
<!--- Describe how your model was evaluated -->
|
80 |
+
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
82 |
+
|
83 |
+
|
84 |
+
## Training
|
85 |
+
The model was trained with the parameters:
|
86 |
+
|
87 |
+
**DataLoader**:
|
88 |
+
|
89 |
+
`torch.utils.data.dataloader.DataLoader` of length 180 with parameters:
|
90 |
+
```
|
91 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
92 |
+
```
|
93 |
+
|
94 |
+
**Loss**:
|
95 |
+
|
96 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
97 |
+
|
98 |
+
Parameters of the fit()-Method:
|
99 |
+
```
|
100 |
+
{
|
101 |
+
"epochs": 16,
|
102 |
+
"evaluation_steps": 10000,
|
103 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
104 |
+
"max_grad_norm": 1,
|
105 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
106 |
+
"optimizer_params": {
|
107 |
+
"lr": 2e-05
|
108 |
+
},
|
109 |
+
"scheduler": "WarmupLinear",
|
110 |
+
"steps_per_epoch": null,
|
111 |
+
"warmup_steps": 288,
|
112 |
+
"weight_decay": 0.01
|
113 |
+
}
|
114 |
+
```
|
115 |
+
|
116 |
+
|
117 |
+
## Full Model Architecture
|
118 |
+
```
|
119 |
+
SentenceTransformer(
|
120 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
121 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
122 |
+
)
|
123 |
+
```
|
124 |
+
|
125 |
+
## Citing & Authors
|
126 |
+
|
127 |
+
<!--- Describe where people can find more information -->
|
trained_model_stsbenchmark_bert-base-uncased/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.39.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
trained_model_stsbenchmark_bert-base-uncased/config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.6.1",
|
4 |
+
"transformers": "4.39.1",
|
5 |
+
"pytorch": "2.1.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
trained_model_stsbenchmark_bert-base-uncased/eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,-1,0.8314586112849952,0.8222861463449044,0.7993198330481376,0.7950011735438326,0.7984725573815618,0.7942570025560868,0.6980204859229657,0.691568924812272
|
3 |
+
1,-1,0.8407055288130449,0.834337287719971,0.8152096287261316,0.8122204244014548,0.8144975251483847,0.8116885956480807,0.732746004281146,0.730360525368856
|
4 |
+
2,-1,0.8439256364593497,0.8359042369327582,0.8262066732022268,0.8221511615595501,0.8259239791965207,0.8216808891288429,0.7487936308349514,0.7378949198846093
|
5 |
+
3,-1,0.8464276481190168,0.8394870233934864,0.8281315560034785,0.8252383288066867,0.827827341976526,0.8247387146010591,0.755207305963072,0.7448581382442837
|
6 |
+
0,-1,0.7922021805853781,0.7713972176442391,0.7603672763034102,0.7439105700492636,0.7602031813189104,0.7441131583398928,0.6816470416797301,0.6671730658498958
|
7 |
+
1,-1,0.8353590575047928,0.8271301553141639,0.8070309131863589,0.8038339361946429,0.8064465524675363,0.8034004299728619,0.724916249478606,0.7157522961344986
|
8 |
+
2,-1,0.8383577657525391,0.8303132485677799,0.8194439900889535,0.8157611441363017,0.8193997494383647,0.8159934845337001,0.7427196371940937,0.7310482210576092
|
9 |
+
3,-1,0.8423781754611726,0.8376504193628221,0.8220139794418871,0.8205376067862071,0.8219503650163204,0.820750767022779,0.746923157755294,0.7374371616324693
|
10 |
+
4,-1,0.8435332150937506,0.8378118737570728,0.8309533350978225,0.8276985663782159,0.8312413640405018,0.8280579248554486,0.7600228119842427,0.7466608648818838
|
11 |
+
5,-1,0.8426154400776431,0.8388481909555153,0.827527318476358,0.8270527243509243,0.827468221593408,0.8272636902812877,0.7583694197302585,0.7463647005705575
|
12 |
+
6,-1,0.8434839830593363,0.8387893586960224,0.8278000664778432,0.8262394126974679,0.8279299017271557,0.8266215271437661,0.75634507023444,0.7456149356556544
|
13 |
+
7,-1,0.8447623486297048,0.8402910393235883,0.8286159386784336,0.8273430910606207,0.8284183482230283,0.8273611189913042,0.7632274591667264,0.7515728597906741
|
14 |
+
8,-1,0.8430060550087329,0.8397695352256395,0.8278598137318165,0.8268930065058908,0.8278714418474407,0.8270507201740991,0.765544059776489,0.7535096986556942
|
15 |
+
9,-1,0.8463043217945104,0.8428571356192778,0.828913574421771,0.8280654267505405,0.8286295779818086,0.8280033348152811,0.7655773899365361,0.7545359162753758
|
16 |
+
10,-1,0.8454911166453738,0.841096177887406,0.8312677636079294,0.8301731025956736,0.831042276187397,0.8299344352421627,0.7665158189322197,0.7543237041125989
|
17 |
+
11,-1,0.8450383066521526,0.8415202053543727,0.8300219045475918,0.8293242873398408,0.8298684020017837,0.8291249032692225,0.7646272684826112,0.7525458091130097
|
18 |
+
12,-1,0.845263138308006,0.8422066938360778,0.8310570453409322,0.8303017631159286,0.8309400428836656,0.8301016874460738,0.7663755880184066,0.7548354410662842
|
19 |
+
13,-1,0.8449131314461613,0.8419114160316352,0.830002123134018,0.8289793811849208,0.8299623591619595,0.8290426390954682,0.7668088075160115,0.7552771459844687
|
20 |
+
14,-1,0.8449501341914755,0.8423892317883578,0.8306677759491086,0.829802245120922,0.8305861595344564,0.8297362152477388,0.7668176398821887,0.7552218664389473
|
21 |
+
15,-1,0.8451687758660085,0.8425458732023435,0.8305440831498357,0.8297474624645348,0.8304598348669994,0.8296288883562123,0.7670469989815153,0.7557805421607521
|
22 |
+
0,-1,0.7899956845018291,0.771507036834188,0.7511551366882981,0.7358397838917168,0.7505945939602987,0.7354465940362954,0.6563770654647433,0.6475599646483539
|
23 |
+
1,-1,0.8347231117460785,0.8256291067400063,0.8058966618423721,0.8011948649863158,0.8052061914434191,0.8006856206134588,0.7141478665675217,0.704298398125894
|
24 |
+
2,-1,0.8436092176321606,0.8367681848505647,0.8245531713906449,0.82164701173788,0.8240046280750112,0.821232277497679,0.7502878000647448,0.7401174636541575
|
25 |
+
3,-1,0.8442901759402588,0.8373153268200199,0.8233687598308753,0.8208385882658366,0.8229073657313626,0.8207712116582747,0.7526192815662727,0.7432087475182582
|
26 |
+
4,-1,0.848353412564754,0.8438935423413328,0.829263800730978,0.8287148585262668,0.8290973494834554,0.8288209896643224,0.7396624558596283,0.7298966325807095
|
27 |
+
5,-1,0.8469338550018505,0.8413124282991357,0.8287247365357678,0.8271664056872715,0.8283838259367564,0.8270491991390324,0.7624021030507305,0.7519352784652986
|
28 |
+
6,-1,0.8455852769710634,0.8414048493223681,0.8298968746305437,0.8288217774732614,0.8297699976985162,0.8287398477439649,0.7642665063372014,0.7535908976466645
|
29 |
+
7,-1,0.8453879300462057,0.8408612718889563,0.8312776123581294,0.8296165810948535,0.8311280728049801,0.8296103221073954,0.7677834508191366,0.7561287744345223
|
30 |
+
8,-1,0.8469803565050675,0.8436047151916304,0.8317179509745953,0.8307405519533304,0.8315029958649137,0.8304593208160991,0.7688328892882389,0.7577201046864561
|
31 |
+
9,-1,0.8467204857153575,0.8436336011136023,0.8298114267477297,0.8295115852024595,0.8296737666691951,0.829267596713595,0.7655896476711741,0.754997451917312
|
32 |
+
10,-1,0.8471160424084345,0.8432494435492464,0.8321402716339013,0.8307532470984191,0.831911482208498,0.8307224780133322,0.767914550413006,0.7548514050623367
|
33 |
+
11,-1,0.847349492530715,0.8440041197580994,0.8324373880423506,0.8316586340589276,0.8321991304921575,0.8315150976339994,0.769308193094527,0.7582940571896748
|
34 |
+
12,-1,0.8475483430525071,0.844448690182024,0.8327238696222913,0.8321645956431722,0.832418112421938,0.8319732981883223,0.7685207480088893,0.7576570458712267
|
35 |
+
13,-1,0.8473602432987508,0.8439963794305544,0.832768618687382,0.8318741466665907,0.8324902011429588,0.8316555805352172,0.7688799040213863,0.7573533244895924
|
36 |
+
14,-1,0.8481167455381742,0.8449734428778592,0.8328092293062578,0.8320476868822251,0.8325869268980407,0.8319152283577276,0.7698448588934874,0.7584867636278891
|
37 |
+
15,-1,0.8480331647871943,0.8449084186287636,0.8327584026598132,0.8319446046864493,0.8325269188372508,0.8319455576240813,0.7694074517084232,0.7580956102185132
|
trained_model_stsbenchmark_bert-base-uncased/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2da70ebc1789b8d4da14934bcf6f70845b7e0c1e93d3891cc4995fb1e41af7ef
|
3 |
+
size 437951328
|
trained_model_stsbenchmark_bert-base-uncased/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
trained_model_stsbenchmark_bert-base-uncased/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
trained_model_stsbenchmark_bert-base-uncased/similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.875137977555676,0.8745703963672751,0.8398310472578498,0.8442842374538337,0.8390145445499485,0.8434616141103319,0.7948977053014381,0.7981928188151527
|
3 |
+
-1,-1,0.8728396119084929,0.8735078768384611,0.8418952687938658,0.8462348206504858,0.8413260025721658,0.8456096433108078,0.8123532015656593,0.8122313711954551
|
4 |
+
-1,-1,0.8746751636534322,0.8759463607276905,0.844710906429047,0.8485861720526876,0.8444537119546713,0.8484802573889416,0.8106640181302358,0.811605998878314
|
5 |
+
-1,-1,0.8746751636534322,0.8759463607276905,0.844710906429047,0.8485861720526876,0.8444537119546713,0.8484802573889416,0.8106640181302358,0.811605998878314
|
trained_model_stsbenchmark_bert-base-uncased/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
trained_model_stsbenchmark_bert-base-uncased/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trained_model_stsbenchmark_bert-base-uncased/tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
trained_model_stsbenchmark_bert-base-uncased/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|