Charles Kabui commited on
Commit
41dd156
·
0 Parent(s):

Initial Commit

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Text Similarity Prediction and Analysis
3
+ emoji: 🚀
4
+ colorFrom: pink
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.33.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ from sentence_transformers import CrossEncoder, SentenceTransformer
3
+ import streamlit as st
4
+ from sklearn.metrics.pairwise import cosine_similarity
5
+ from samples import get_samples
6
+ import textdistance
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
+ from encode_sentences import encode_sentences
9
+
10
+ model_save_path = 'trained_model_stsbenchmark_bert-base-uncased'
11
+ bi_encoder = 'Bi-Encoder'
12
+ cross_encoder = 'Cross-Encoder'
13
+ levenshtein_distance = 'Levenshtein Distance'
14
+ tf_idf = 'TF-IDF'
15
+ random_forest = 'RandomForest'
16
+ title = 'Sentence Similarity with Transformers'
17
+ tfidf_vectorizer = TfidfVectorizer()
18
+ cross_encoder_trasformer = CrossEncoder(model_save_path)
19
+ bi_encoder_trasformer = SentenceTransformer(model_save_path)
20
+ random_forest_model = joblib.load('trained_model_random_forest.joblib')
21
+ @st.cache_data
22
+ def compute_similarity(sentence_1, sentence_2, comparison):
23
+ if comparison == bi_encoder:
24
+ return cosine_similarity([bi_encoder_trasformer.encode(sentence_1)], [bi_encoder_trasformer.encode(sentence_2)])[0][0]
25
+ return cross_encoder_trasformer.predict([sentence_1, sentence_2])
26
+
27
+ st.set_page_config(page_title=title, layout = 'wide', initial_sidebar_state = 'auto')
28
+ st.title(title)
29
+ st.write("This app takes two sentences and outputs their similarity score using a fine-tuned transformer model.")
30
+
31
+ # Example sentences section
32
+ test_samples = get_samples()
33
+ st.sidebar.header("Example Sentences")
34
+ example_1 = st.sidebar.radio("Sentence 1", test_samples['sentence1'].values.tolist())
35
+ example_2 = st.sidebar.radio("Sentence 2", test_samples['sentence2'].values.tolist())
36
+
37
+ # Input fields
38
+ sentence_1 = st.text_input("Enter Sentence 1:", example_1)
39
+ sentence_2 = st.text_input("Enter Sentence 2:", example_2)
40
+ comparison = st.selectbox("Comparicon:", [bi_encoder, cross_encoder, levenshtein_distance, tf_idf, random_forest])
41
+
42
+ if st.button("Compare"):
43
+ # Compute similarity
44
+ if comparison in [bi_encoder, cross_encoder]:
45
+ similarity = compute_similarity(sentence_1, sentence_2, comparison)
46
+ elif comparison == levenshtein_distance:
47
+ similarity = textdistance.levenshtein.normalized_similarity(sentence_1, sentence_2)
48
+ elif comparison == tf_idf:
49
+ similarity = cosine_similarity(tfidf_vectorizer.fit_transform([sentence_1, sentence_2]))[0][1]
50
+ elif comparison == random_forest:
51
+ similarity = random_forest_model.predict(encode_sentences(bi_encoder_trasformer, sentence_1, sentence_2))[0]
52
+ st.write(f"Similarity Score: {similarity:.4f}")
53
+ st.write("A higher score indicates greater similarity. The score ranges from 0 to 1.")
encode_sentences.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.preprocessing import StandardScaler
2
+ scaler = StandardScaler()
3
+
4
+ def encode_sentences(tokenizer, sentence1, sentence2):
5
+ # Encode the sentences
6
+ embedding1 = tokenizer.encode(sentence1, convert_to_tensor=True).cpu()
7
+ embedding2 = tokenizer.encode(sentence2, convert_to_tensor=True).cpu()
8
+ # Compute the absolute difference of embeddings as features
9
+ feature = abs(embedding1 - embedding2).numpy().reshape(1, -1)
10
+ # Scale features (use the same scaler as used during training)
11
+ feature_scaled = scaler.fit_transform(feature)# scaler.transform(feature)
12
+ return feature_scaled
notebook.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ scikit-learn==1.3.2
2
+ accelerate==0.28.0
3
+ sentence-transformers==2.6.1
samples.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from datasets import load_dataset
3
+
4
+ def get_samples():
5
+ dataset = load_dataset("mteb/stsbenchmark-sts")
6
+ get_where = lambda score: dataset['validation'].filter(lambda x: x['score'] == score, load_from_cache_file = False)[0]
7
+ test_samples = pd.DataFrame([
8
+ get_where(5),
9
+ get_where(4.5),
10
+ get_where(4),
11
+ get_where(3.5),
12
+ get_where(3),
13
+ get_where(2.5),
14
+ get_where(2),
15
+ get_where(1.5),
16
+ get_where(1),
17
+ get_where(0.5),
18
+ get_where(0),
19
+ ], columns=['sentence1', 'sentence2', 'score'])
20
+ return test_samples
trained_model_random_forest.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69284946a405027ded9d5a6d0589912d42ccbe40506da21aaefcf0634c0c8f9f
3
+ size 27083201
trained_model_stsbenchmark_bert-base-uncased/.DS_Store ADDED
Binary file (6.15 kB). View file
 
trained_model_stsbenchmark_bert-base-uncased/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
trained_model_stsbenchmark_bert-base-uncased/README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+
10
+ ---
11
+
12
+ # {MODEL_NAME}
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
+
16
+ <!--- Describe your model here -->
17
+
18
+ ## Usage (Sentence-Transformers)
19
+
20
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
+
22
+ ```
23
+ pip install -U sentence-transformers
24
+ ```
25
+
26
+ Then you can use the model like this:
27
+
28
+ ```python
29
+ from sentence_transformers import SentenceTransformer
30
+ sentences = ["This is an example sentence", "Each sentence is converted"]
31
+
32
+ model = SentenceTransformer('{MODEL_NAME}')
33
+ embeddings = model.encode(sentences)
34
+ print(embeddings)
35
+ ```
36
+
37
+
38
+
39
+ ## Usage (HuggingFace Transformers)
40
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModel
44
+ import torch
45
+
46
+
47
+ #Mean Pooling - Take attention mask into account for correct averaging
48
+ def mean_pooling(model_output, attention_mask):
49
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
+
53
+
54
+ # Sentences we want sentence embeddings for
55
+ sentences = ['This is an example sentence', 'Each sentence is converted']
56
+
57
+ # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
59
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
60
+
61
+ # Tokenize sentences
62
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
+
64
+ # Compute token embeddings
65
+ with torch.no_grad():
66
+ model_output = model(**encoded_input)
67
+
68
+ # Perform pooling. In this case, mean pooling.
69
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
+
71
+ print("Sentence embeddings:")
72
+ print(sentence_embeddings)
73
+ ```
74
+
75
+
76
+
77
+ ## Evaluation Results
78
+
79
+ <!--- Describe how your model was evaluated -->
80
+
81
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
82
+
83
+
84
+ ## Training
85
+ The model was trained with the parameters:
86
+
87
+ **DataLoader**:
88
+
89
+ `torch.utils.data.dataloader.DataLoader` of length 180 with parameters:
90
+ ```
91
+ {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
92
+ ```
93
+
94
+ **Loss**:
95
+
96
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
97
+
98
+ Parameters of the fit()-Method:
99
+ ```
100
+ {
101
+ "epochs": 16,
102
+ "evaluation_steps": 10000,
103
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
104
+ "max_grad_norm": 1,
105
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
106
+ "optimizer_params": {
107
+ "lr": 2e-05
108
+ },
109
+ "scheduler": "WarmupLinear",
110
+ "steps_per_epoch": null,
111
+ "warmup_steps": 288,
112
+ "weight_decay": 0.01
113
+ }
114
+ ```
115
+
116
+
117
+ ## Full Model Architecture
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
121
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ )
123
+ ```
124
+
125
+ ## Citing & Authors
126
+
127
+ <!--- Describe where people can find more information -->
trained_model_stsbenchmark_bert-base-uncased/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
trained_model_stsbenchmark_bert-base-uncased/config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.6.1",
4
+ "transformers": "4.39.1",
5
+ "pytorch": "2.1.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
trained_model_stsbenchmark_bert-base-uncased/eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,-1,0.8314586112849952,0.8222861463449044,0.7993198330481376,0.7950011735438326,0.7984725573815618,0.7942570025560868,0.6980204859229657,0.691568924812272
3
+ 1,-1,0.8407055288130449,0.834337287719971,0.8152096287261316,0.8122204244014548,0.8144975251483847,0.8116885956480807,0.732746004281146,0.730360525368856
4
+ 2,-1,0.8439256364593497,0.8359042369327582,0.8262066732022268,0.8221511615595501,0.8259239791965207,0.8216808891288429,0.7487936308349514,0.7378949198846093
5
+ 3,-1,0.8464276481190168,0.8394870233934864,0.8281315560034785,0.8252383288066867,0.827827341976526,0.8247387146010591,0.755207305963072,0.7448581382442837
6
+ 0,-1,0.7922021805853781,0.7713972176442391,0.7603672763034102,0.7439105700492636,0.7602031813189104,0.7441131583398928,0.6816470416797301,0.6671730658498958
7
+ 1,-1,0.8353590575047928,0.8271301553141639,0.8070309131863589,0.8038339361946429,0.8064465524675363,0.8034004299728619,0.724916249478606,0.7157522961344986
8
+ 2,-1,0.8383577657525391,0.8303132485677799,0.8194439900889535,0.8157611441363017,0.8193997494383647,0.8159934845337001,0.7427196371940937,0.7310482210576092
9
+ 3,-1,0.8423781754611726,0.8376504193628221,0.8220139794418871,0.8205376067862071,0.8219503650163204,0.820750767022779,0.746923157755294,0.7374371616324693
10
+ 4,-1,0.8435332150937506,0.8378118737570728,0.8309533350978225,0.8276985663782159,0.8312413640405018,0.8280579248554486,0.7600228119842427,0.7466608648818838
11
+ 5,-1,0.8426154400776431,0.8388481909555153,0.827527318476358,0.8270527243509243,0.827468221593408,0.8272636902812877,0.7583694197302585,0.7463647005705575
12
+ 6,-1,0.8434839830593363,0.8387893586960224,0.8278000664778432,0.8262394126974679,0.8279299017271557,0.8266215271437661,0.75634507023444,0.7456149356556544
13
+ 7,-1,0.8447623486297048,0.8402910393235883,0.8286159386784336,0.8273430910606207,0.8284183482230283,0.8273611189913042,0.7632274591667264,0.7515728597906741
14
+ 8,-1,0.8430060550087329,0.8397695352256395,0.8278598137318165,0.8268930065058908,0.8278714418474407,0.8270507201740991,0.765544059776489,0.7535096986556942
15
+ 9,-1,0.8463043217945104,0.8428571356192778,0.828913574421771,0.8280654267505405,0.8286295779818086,0.8280033348152811,0.7655773899365361,0.7545359162753758
16
+ 10,-1,0.8454911166453738,0.841096177887406,0.8312677636079294,0.8301731025956736,0.831042276187397,0.8299344352421627,0.7665158189322197,0.7543237041125989
17
+ 11,-1,0.8450383066521526,0.8415202053543727,0.8300219045475918,0.8293242873398408,0.8298684020017837,0.8291249032692225,0.7646272684826112,0.7525458091130097
18
+ 12,-1,0.845263138308006,0.8422066938360778,0.8310570453409322,0.8303017631159286,0.8309400428836656,0.8301016874460738,0.7663755880184066,0.7548354410662842
19
+ 13,-1,0.8449131314461613,0.8419114160316352,0.830002123134018,0.8289793811849208,0.8299623591619595,0.8290426390954682,0.7668088075160115,0.7552771459844687
20
+ 14,-1,0.8449501341914755,0.8423892317883578,0.8306677759491086,0.829802245120922,0.8305861595344564,0.8297362152477388,0.7668176398821887,0.7552218664389473
21
+ 15,-1,0.8451687758660085,0.8425458732023435,0.8305440831498357,0.8297474624645348,0.8304598348669994,0.8296288883562123,0.7670469989815153,0.7557805421607521
22
+ 0,-1,0.7899956845018291,0.771507036834188,0.7511551366882981,0.7358397838917168,0.7505945939602987,0.7354465940362954,0.6563770654647433,0.6475599646483539
23
+ 1,-1,0.8347231117460785,0.8256291067400063,0.8058966618423721,0.8011948649863158,0.8052061914434191,0.8006856206134588,0.7141478665675217,0.704298398125894
24
+ 2,-1,0.8436092176321606,0.8367681848505647,0.8245531713906449,0.82164701173788,0.8240046280750112,0.821232277497679,0.7502878000647448,0.7401174636541575
25
+ 3,-1,0.8442901759402588,0.8373153268200199,0.8233687598308753,0.8208385882658366,0.8229073657313626,0.8207712116582747,0.7526192815662727,0.7432087475182582
26
+ 4,-1,0.848353412564754,0.8438935423413328,0.829263800730978,0.8287148585262668,0.8290973494834554,0.8288209896643224,0.7396624558596283,0.7298966325807095
27
+ 5,-1,0.8469338550018505,0.8413124282991357,0.8287247365357678,0.8271664056872715,0.8283838259367564,0.8270491991390324,0.7624021030507305,0.7519352784652986
28
+ 6,-1,0.8455852769710634,0.8414048493223681,0.8298968746305437,0.8288217774732614,0.8297699976985162,0.8287398477439649,0.7642665063372014,0.7535908976466645
29
+ 7,-1,0.8453879300462057,0.8408612718889563,0.8312776123581294,0.8296165810948535,0.8311280728049801,0.8296103221073954,0.7677834508191366,0.7561287744345223
30
+ 8,-1,0.8469803565050675,0.8436047151916304,0.8317179509745953,0.8307405519533304,0.8315029958649137,0.8304593208160991,0.7688328892882389,0.7577201046864561
31
+ 9,-1,0.8467204857153575,0.8436336011136023,0.8298114267477297,0.8295115852024595,0.8296737666691951,0.829267596713595,0.7655896476711741,0.754997451917312
32
+ 10,-1,0.8471160424084345,0.8432494435492464,0.8321402716339013,0.8307532470984191,0.831911482208498,0.8307224780133322,0.767914550413006,0.7548514050623367
33
+ 11,-1,0.847349492530715,0.8440041197580994,0.8324373880423506,0.8316586340589276,0.8321991304921575,0.8315150976339994,0.769308193094527,0.7582940571896748
34
+ 12,-1,0.8475483430525071,0.844448690182024,0.8327238696222913,0.8321645956431722,0.832418112421938,0.8319732981883223,0.7685207480088893,0.7576570458712267
35
+ 13,-1,0.8473602432987508,0.8439963794305544,0.832768618687382,0.8318741466665907,0.8324902011429588,0.8316555805352172,0.7688799040213863,0.7573533244895924
36
+ 14,-1,0.8481167455381742,0.8449734428778592,0.8328092293062578,0.8320476868822251,0.8325869268980407,0.8319152283577276,0.7698448588934874,0.7584867636278891
37
+ 15,-1,0.8480331647871943,0.8449084186287636,0.8327584026598132,0.8319446046864493,0.8325269188372508,0.8319455576240813,0.7694074517084232,0.7580956102185132
trained_model_stsbenchmark_bert-base-uncased/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2da70ebc1789b8d4da14934bcf6f70845b7e0c1e93d3891cc4995fb1e41af7ef
3
+ size 437951328
trained_model_stsbenchmark_bert-base-uncased/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
trained_model_stsbenchmark_bert-base-uncased/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
trained_model_stsbenchmark_bert-base-uncased/similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.875137977555676,0.8745703963672751,0.8398310472578498,0.8442842374538337,0.8390145445499485,0.8434616141103319,0.7948977053014381,0.7981928188151527
3
+ -1,-1,0.8728396119084929,0.8735078768384611,0.8418952687938658,0.8462348206504858,0.8413260025721658,0.8456096433108078,0.8123532015656593,0.8122313711954551
4
+ -1,-1,0.8746751636534322,0.8759463607276905,0.844710906429047,0.8485861720526876,0.8444537119546713,0.8484802573889416,0.8106640181302358,0.811605998878314
5
+ -1,-1,0.8746751636534322,0.8759463607276905,0.844710906429047,0.8485861720526876,0.8444537119546713,0.8484802573889416,0.8106640181302358,0.811605998878314
trained_model_stsbenchmark_bert-base-uncased/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
trained_model_stsbenchmark_bert-base-uncased/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
trained_model_stsbenchmark_bert-base-uncased/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
trained_model_stsbenchmark_bert-base-uncased/vocab.txt ADDED
The diff for this file is too large to render. See raw diff