Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoModelForSeq2SeqLM, | |
| AutoTokenizer, | |
| HfArgumentParser | |
| ) | |
| from preprocess import DatasetArguments, ProcessedArguments, get_words | |
| from model import get_classifier_vectorizer | |
| from shared import device | |
| from predict import ClassifierArguments, predict, filter_predictions, TrainingOutputArguments | |
| from segment import word_start, word_end, SegmentationArguments, add_labels_to_words | |
| import pandas as pd | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from tqdm import tqdm | |
| import json | |
| import os | |
| import random | |
| class EvaluationArguments(TrainingOutputArguments): | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| max_videos: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| 'help': 'The number of videos to test on' | |
| } | |
| ) | |
| data_dir: Optional[str] = DatasetArguments.__dataclass_fields__['data_dir'] | |
| dataset: Optional[str] = DatasetArguments.__dataclass_fields__[ | |
| 'validation_file'] | |
| output_file: Optional[str] = field( | |
| default='metrics.csv', | |
| metadata={ | |
| 'help': 'Save metrics to output file' | |
| } | |
| ) | |
| def jaccard(x1, x2, y1, y2): | |
| # Calculate jaccard index | |
| intersection = max(0, min(x2, y2)-max(x1, y1)) | |
| filled_union = max(x2, y2) - min(x1, y1) | |
| return intersection/filled_union | |
| def attach_predictions_to_sponsor_segments(predictions, sponsor_segments): | |
| """Attach sponsor segments to closest prediction""" | |
| for prediction in predictions: | |
| prediction['best_overlap'] = 0 | |
| prediction['best_sponsorship'] = None | |
| # Assign predictions to actual (labelled) sponsored segments | |
| for sponsor_segment in sponsor_segments: | |
| sponsor_segment['best_overlap'] = 0 | |
| sponsor_segment['best_prediction'] = None | |
| for prediction in predictions: | |
| j = jaccard(prediction['start'], prediction['end'], | |
| sponsor_segment['start'], sponsor_segment['end']) | |
| if sponsor_segment['best_overlap'] < j: | |
| sponsor_segment['best_overlap'] = j | |
| sponsor_segment['best_prediction'] = prediction | |
| if prediction['best_overlap'] < j: | |
| prediction['best_overlap'] = j | |
| prediction['best_sponsorship'] = sponsor_segment | |
| return sponsor_segments | |
| def calculate_metrics(labelled_words, predictions): | |
| metrics = { | |
| 'true_positive': 0, # Is sponsor, predicted sponsor | |
| # Is sponsor, predicted not sponsor (i.e., missed it - bad) | |
| 'false_negative': 0, | |
| # Is not sponsor, predicted sponsor (classified incorectly, not that bad since we do manual checking afterwards) | |
| 'false_positive': 0, | |
| 'true_negative': 0, # Is not sponsor, predicted not sponsor | |
| } | |
| metrics['video_duration'] = word_end( | |
| labelled_words[-1])-word_start(labelled_words[0]) | |
| for index, word in enumerate(labelled_words): | |
| if index >= len(labelled_words) - 1: | |
| continue | |
| # TODO make sure words with manual transcripts | |
| duration = labelled_words[index+1]['start'] - word['start'] | |
| predicted_sponsor = False | |
| for p in predictions: | |
| # Is in some prediction | |
| if p['start'] <= word['start'] <= p['end']: | |
| predicted_sponsor = True | |
| break | |
| if predicted_sponsor: | |
| # total_positive_time += duration | |
| if word['sponsor']: # Is actual sponsor | |
| metrics['true_positive'] += duration | |
| else: | |
| metrics['false_positive'] += duration | |
| else: | |
| # total_negative_time += duration | |
| if word['sponsor']: # Is actual sponsor | |
| metrics['false_negative'] += duration | |
| else: | |
| metrics['true_negative'] += duration | |
| # NOTE In cases where we encounter division by 0, we say that the value is 1 | |
| # https://stats.stackexchange.com/a/1775 | |
| # (Precision) TP+FP=0: means that all instances were predicted as negative | |
| # (Recall) TP+FN=0: means that there were no positive cases in the input data | |
| # The fraction of predictions our model got right | |
| # Can simplify, but use full formula | |
| z = metrics['true_positive'] + metrics['true_negative'] + \ | |
| metrics['false_positive'] + metrics['false_negative'] | |
| metrics['accuracy'] = ( | |
| (metrics['true_positive'] + metrics['true_negative']) / z) if z > 0 else 1 | |
| # What proportion of positive identifications was actually correct? | |
| z = metrics['true_positive'] + metrics['false_positive'] | |
| metrics['precision'] = (metrics['true_positive'] / z) if z > 0 else 1 | |
| # What proportion of actual positives was identified correctly? | |
| z = metrics['true_positive'] + metrics['false_negative'] | |
| metrics['recall'] = (metrics['true_positive'] / z) if z > 0 else 1 | |
| # https://deepai.org/machine-learning-glossary-and-terms/f-score | |
| s = metrics['precision'] + metrics['recall'] | |
| metrics['f-score'] = (2 * (metrics['precision'] * | |
| metrics['recall']) / s) if s > 0 else 0 | |
| return metrics | |
| def main(): | |
| hf_parser = HfArgumentParser(( | |
| EvaluationArguments, | |
| ProcessedArguments, | |
| SegmentationArguments, | |
| ClassifierArguments | |
| )) | |
| evaluation_args, processed_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses() | |
| model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path) | |
| model.to(device()) | |
| tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path) | |
| dataset = load_dataset('json', data_files=os.path.join( | |
| evaluation_args.data_dir, evaluation_args.dataset))['train'] | |
| video_ids = [row['video_id'] for row in dataset] | |
| random.shuffle(video_ids) # TODO Make param | |
| if evaluation_args.max_videos is not None: | |
| video_ids = video_ids[:evaluation_args.max_videos] | |
| # Load labelled data: | |
| final_path = os.path.join( | |
| processed_args.processed_dir, processed_args.processed_file) | |
| with open(final_path) as fp: | |
| final_data = json.load(fp) | |
| classifier, vectorizer = get_classifier_vectorizer(classifier_args) | |
| total_accuracy = 0 | |
| total_precision = 0 | |
| total_recall = 0 | |
| total_fscore = 0 | |
| count = 0 | |
| out_metrics = [] | |
| try: | |
| with tqdm(video_ids) as progress: | |
| for video_id in progress: | |
| progress.set_description(f'Processing {video_id}') | |
| sponsor_segments = final_data.get(video_id, []) | |
| words = get_words(video_id) | |
| if not words: | |
| continue | |
| count += 1 | |
| # Make predictions | |
| predictions = predict(video_id, model, tokenizer, | |
| segmentation_args, words, classifier_args) | |
| labelled_words = add_labels_to_words(words, sponsor_segments) | |
| met = calculate_metrics(labelled_words, predictions) | |
| met['video_id'] = video_id | |
| out_metrics.append(met) | |
| total_accuracy += met['accuracy'] | |
| total_precision += met['precision'] | |
| total_recall += met['recall'] | |
| total_fscore += met['f-score'] | |
| progress.set_postfix({ | |
| 'accuracy': total_accuracy/count, | |
| 'precision': total_precision/count, | |
| 'recall': total_recall/count, | |
| 'f-score': total_fscore/count | |
| }) | |
| labelled_predicted_segments = attach_predictions_to_sponsor_segments( | |
| predictions, sponsor_segments) | |
| for seg in labelled_predicted_segments: | |
| if seg['best_prediction'] is None: | |
| print('\nNo match found for', seg) | |
| except KeyboardInterrupt: | |
| pass | |
| df = pd.DataFrame(out_metrics) | |
| df.to_csv(evaluation_args.output_file) | |
| print(df.mean()) | |
| if __name__ == '__main__': | |
| main() | |