|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
get_completion = pipeline("ner", model="dslim/bert-base-NER") |
|
|
|
def ner(input): |
|
output = get_completion(input) |
|
return {"text": input, "entities": output} |
|
|
|
demo = gr.Interface(fn=ner, |
|
inputs=[gr.Textbox(label="Text to find entities", lines=2)], |
|
outputs=[gr.HighlightedText(label="Text with entities")], |
|
title="NER with dslim/bert-base-NER", |
|
description="Find entities using the `dslim/bert-base-NER` model under the hood!", |
|
allow_flagging="never", |
|
|
|
examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"]) |
|
demo.launch() |
|
|