Spaces:
Running
Running
| import fastapi | |
| import json | |
| import markdown | |
| import uvicorn | |
| from fastapi.responses import HTMLResponse | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from sse_starlette.sse import EventSourceResponse | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| from ctransformers import AutoModelForCausalLM | |
| from pydantic import BaseModel | |
| config = {"max_seq_len": 4096} | |
| llm = AutoModelForCausalLM.from_pretrained('TheBloke/MPT-7B-Storywriter-GGML', | |
| model_file='mpt-7b-storywriter.ggmlv3.q4_0.bin', | |
| model_type='mpt') | |
| app = fastapi.FastAPI() | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| async def index(): | |
| with open("README.md", "r", encoding="utf-8") as readme_file: | |
| md_template_string = readme_file.read() | |
| html_content = markdown.markdown(md_template_string) | |
| return HTMLResponse(content=html_content, status_code=200) | |
| class ChatCompletionRequest(BaseModel): | |
| prompt: str | |
| async def chat(request: ChatCompletionRequest, response_mode=None): | |
| completion = llm(request.prompt) | |
| async def server_sent_events(chat_chunks): | |
| for chat_chunk in chat_chunks: | |
| yield dict(data=json.dumps(chat_chunk)) | |
| yield dict(data="[DONE]") | |
| return EventSourceResponse(server_sent_events(completion)) | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=8000) | |