import gradio as gr import torch from torch import autocast from diffusers import StableDiffusionPipeline from datasets import load_dataset from PIL import Image import re model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True) pipe = pipe.to(device) def infer(prompt): with autocast("cuda"): images_list = pipe( [prompt])['sample'] return images_list prompt = 'a perfect photo of a sunset on a Greek beach' intf = gr.Interface(fn = infer, inputs = prompt, outputs = gr.outputs.Image()) intf.launch()