import torch from torch import nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.flatten = nn.Flatten() self.fc1 = nn.Linear(64 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.relu(x) x = self.maxpool(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x def predict(model, image): model.eval() with torch.no_grad(): output = model(image) result = torch.argmax(output,dim=1).item() return result