|
|
|
""" |
|
Image augmentation functions |
|
""" |
|
|
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from .metrics import bbox_ioa |
|
|
|
|
|
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): |
|
|
|
if hgain or sgain or vgain: |
|
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 |
|
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) |
|
dtype = im.dtype |
|
|
|
x = np.arange(0, 256, dtype=r.dtype) |
|
lut_hue = ((x * r[0]) % 180).astype(dtype) |
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) |
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) |
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) |
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) |
|
|
|
|
|
def hist_equalize(im, clahe=True, bgr=False): |
|
|
|
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) |
|
if clahe: |
|
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
yuv[:, :, 0] = c.apply(yuv[:, :, 0]) |
|
else: |
|
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) |
|
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) |
|
|
|
|
|
def replicate(im, labels): |
|
|
|
h, w = im.shape[:2] |
|
boxes = labels[:, 1:].astype(int) |
|
x1, y1, x2, y2 = boxes.T |
|
s = ((x2 - x1) + (y2 - y1)) / 2 |
|
for i in s.argsort()[:round(s.size * 0.5)]: |
|
x1b, y1b, x2b, y2b = boxes[i] |
|
bh, bw = y2b - y1b, x2b - x1b |
|
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) |
|
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] |
|
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] |
|
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) |
|
|
|
return im, labels |
|
|
|
|
|
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): |
|
|
|
shape = im.shape[:2] |
|
if isinstance(new_shape, int): |
|
new_shape = (new_shape, new_shape) |
|
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
|
if not scaleup: |
|
r = min(r, 1.0) |
|
|
|
|
|
ratio = r, r |
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] |
|
if auto: |
|
dw, dh = np.mod(dw, stride), np.mod(dh, stride) |
|
elif scaleFill: |
|
dw, dh = 0.0, 0.0 |
|
new_unpad = (new_shape[1], new_shape[0]) |
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] |
|
|
|
dw /= 2 |
|
dh /= 2 |
|
|
|
if shape[::-1] != new_unpad: |
|
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) |
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
|
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) |
|
return im, ratio, (dw, dh) |
|
|
|
|
|
def copy_paste(im, labels, segments, p=0.5): |
|
|
|
n = len(segments) |
|
if p and n: |
|
h, w, c = im.shape |
|
im_new = np.zeros(im.shape, np.uint8) |
|
for j in random.sample(range(n), k=round(p * n)): |
|
l, s = labels[j], segments[j] |
|
box = w - l[3], l[2], w - l[1], l[4] |
|
ioa = bbox_ioa(box, labels[:, 1:5]) |
|
if (ioa < 0.30).all(): |
|
labels = np.concatenate((labels, [[l[0], *box]]), 0) |
|
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) |
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) |
|
|
|
result = cv2.bitwise_and(src1=im, src2=im_new) |
|
result = cv2.flip(result, 1) |
|
i = result > 0 |
|
|
|
im[i] = result[i] |
|
|
|
return im, labels, segments |
|
|
|
|
|
def cutout(im, labels, p=0.5): |
|
|
|
if random.random() < p: |
|
h, w = im.shape[:2] |
|
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 |
|
for s in scales: |
|
mask_h = random.randint(1, int(h * s)) |
|
mask_w = random.randint(1, int(w * s)) |
|
|
|
|
|
xmin = max(0, random.randint(0, w) - mask_w // 2) |
|
ymin = max(0, random.randint(0, h) - mask_h // 2) |
|
xmax = min(w, xmin + mask_w) |
|
ymax = min(h, ymin + mask_h) |
|
|
|
|
|
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] |
|
|
|
|
|
if len(labels) and s > 0.03: |
|
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) |
|
ioa = bbox_ioa(box, labels[:, 1:5]) |
|
labels = labels[ioa < 0.60] |
|
|
|
return labels |
|
|
|
|
|
def mixup(im, labels, im2, labels2): |
|
|
|
r = np.random.beta(32.0, 32.0) |
|
im = (im * r + im2 * (1 - r)).astype(np.uint8) |
|
labels = np.concatenate((labels, labels2), 0) |
|
return im, labels |
|
|
|
|
|
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): |
|
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] |
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] |
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) |
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) |
|
|