Spaces:
Runtime error
Runtime error
Commit
·
5fe24db
1
Parent(s):
b9ae369
Upload 6 files
Browse files- .gitattributes +1 -0
- app.py +95 -0
- dv.bin +3 -0
- model.None +3 -0
- predict.ipynb +160 -0
- requirements.txt +5 -0
- scaler.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model.None filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import xgboost as xgb
|
5 |
+
import gradio as gr
|
6 |
+
import pathlib
|
7 |
+
plt = platform.system()
|
8 |
+
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
|
9 |
+
|
10 |
+
model_path = "model.None"
|
11 |
+
model = xgb.Booster()
|
12 |
+
model.load_model(model_path)
|
13 |
+
|
14 |
+
dv_path = "dv.bin"
|
15 |
+
with open(dv_path, 'rb') as f_out:
|
16 |
+
dv = pickle.load(f_out)
|
17 |
+
|
18 |
+
scaler_path = "scaler.bin"
|
19 |
+
with open(scaler_path, 'rb') as f_out:
|
20 |
+
scaler = pickle.load(f_out)
|
21 |
+
|
22 |
+
def preprocess(data):
|
23 |
+
"""Preprocessing of the data"""
|
24 |
+
# turn json input to dataframe
|
25 |
+
data = pd.DataFrame([data])
|
26 |
+
|
27 |
+
# define numerical and categorical features
|
28 |
+
numerical = ["X1", "X2", "X3", "X4", "X5", "X7"]
|
29 |
+
categorical = ["X6", "X8"]
|
30 |
+
|
31 |
+
# preprocess numerical features
|
32 |
+
X_num = scaler.transform(data[numerical])
|
33 |
+
# preprocess categorical features
|
34 |
+
data[categorical] = data[categorical].astype("string")
|
35 |
+
X_dicts = data[categorical].to_dict(orient="records")
|
36 |
+
X_cat = dv.transform(X_dicts)
|
37 |
+
# concatenate both
|
38 |
+
X = np.concatenate((X_num, X_cat), axis=1)
|
39 |
+
|
40 |
+
return X
|
41 |
+
|
42 |
+
|
43 |
+
def predict(X):
|
44 |
+
"""make predictions"""
|
45 |
+
pred = model.predict(X)
|
46 |
+
print('prediction', pred[0])
|
47 |
+
return float(pred[0])
|
48 |
+
|
49 |
+
def main(X1,X2,X3,X4,X5,X6,X7,X8):
|
50 |
+
"""request input, preprocess it and make prediction"""
|
51 |
+
input_data = {
|
52 |
+
"X1": X1,
|
53 |
+
"X2": X2,
|
54 |
+
"X3": X3,
|
55 |
+
"X4": X4,
|
56 |
+
"X5": X5,
|
57 |
+
"X6": X6,
|
58 |
+
"X7": X7,
|
59 |
+
"X8": X8
|
60 |
+
}
|
61 |
+
features = preprocess(input_data)
|
62 |
+
features_2 = xgb.DMatrix(features)
|
63 |
+
pred = predict(features_2)
|
64 |
+
|
65 |
+
result = {'heat load': pred}
|
66 |
+
|
67 |
+
return pred
|
68 |
+
|
69 |
+
def classify_image(img):
|
70 |
+
pred,idx,probs = learn.predict(img)
|
71 |
+
return dict(zip(categories,map(float,probs)))
|
72 |
+
|
73 |
+
#create input and output objects
|
74 |
+
#input
|
75 |
+
input1 = gr.inputs.Number()
|
76 |
+
input2 = gr.inputs.Number()
|
77 |
+
input3 = gr.inputs.Number()
|
78 |
+
input4 = gr.inputs.Number()
|
79 |
+
input5 = gr.inputs.Number()
|
80 |
+
input6 = gr.inputs.Number()
|
81 |
+
input7 = gr.inputs.Number()
|
82 |
+
input8 = gr.inputs.Number()
|
83 |
+
|
84 |
+
#output object
|
85 |
+
output = gr.outputs.Textbox()
|
86 |
+
|
87 |
+
intf = gr.Interface(title = "Energy Efficiency",
|
88 |
+
description = "The objective of this project is to predict the Heating Load based on various building features.",
|
89 |
+
fn=main,
|
90 |
+
inputs=[input1,input2,input3,input4,input5,input6,input7,input8],
|
91 |
+
outputs=[output],
|
92 |
+
live=True,
|
93 |
+
enable_queue=True
|
94 |
+
)
|
95 |
+
intf.launch()
|
dv.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef98b808540e1d26b0de3b99d3fec1014b2086de88e3b89687974be202df9a1
|
3 |
+
size 323
|
model.None
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8291f264931fb723654a8aa531e560b9f8e9a617dc0726beebcc32a93751cce9
|
3 |
+
size 2764170
|
predict.ipynb
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 8,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pickle\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import numpy as np"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 9,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import xgboost as xgb\n",
|
21 |
+
"model_path = \"model.None\"\n",
|
22 |
+
"model = xgb.Booster()\n",
|
23 |
+
"model.load_model(model_path)"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"dv_path = \"dv.bin\"\n",
|
33 |
+
"with open(dv_path, 'rb') as f_out:\n",
|
34 |
+
" dv = pickle.load(f_out)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 6,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"scaler_path = \"scaler.bin\"\n",
|
44 |
+
"with open(scaler_path, 'rb') as f_out:\n",
|
45 |
+
" scaler = pickle.load(f_out)"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 10,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"def preprocess(data):\n",
|
55 |
+
" \"\"\"Preprocessing of the data\"\"\"\n",
|
56 |
+
" # turn json input to dataframe\n",
|
57 |
+
" data = pd.DataFrame([data])\n",
|
58 |
+
"\n",
|
59 |
+
" # define numerical and categorical features\n",
|
60 |
+
" numerical = [\"X1\", \"X2\", \"X3\", \"X4\", \"X5\", \"X7\"]\n",
|
61 |
+
" categorical = [\"X6\", \"X8\"]\n",
|
62 |
+
"\n",
|
63 |
+
" # preprocess numerical features\n",
|
64 |
+
" X_num = scaler.transform(data[numerical])\n",
|
65 |
+
" # preprocess categorical features\n",
|
66 |
+
" data[categorical] = data[categorical].astype(\"string\")\n",
|
67 |
+
" X_dicts = data[categorical].to_dict(orient=\"records\")\n",
|
68 |
+
" X_cat = dv.transform(X_dicts)\n",
|
69 |
+
" # concatenate both\n",
|
70 |
+
" X = np.concatenate((X_num, X_cat), axis=1)\n",
|
71 |
+
"\n",
|
72 |
+
" return X\n",
|
73 |
+
"\n",
|
74 |
+
"\n",
|
75 |
+
"def predict(X):\n",
|
76 |
+
" \"\"\"make predictions\"\"\"\n",
|
77 |
+
" pred = model.predict(X)\n",
|
78 |
+
" print('prediction', pred[0])\n",
|
79 |
+
" return float(pred[0])"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 17,
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"def main(input_data):\n",
|
89 |
+
" \"\"\"request input, preprocess it and make prediction\"\"\"\n",
|
90 |
+
" features = preprocess(input_data)\n",
|
91 |
+
" features_2 = xgb.DMatrix(features)\n",
|
92 |
+
" pred = predict(features_2)\n",
|
93 |
+
"\n",
|
94 |
+
" result = {'heat load': pred}\n",
|
95 |
+
"\n",
|
96 |
+
" return result\n"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 18,
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [
|
104 |
+
{
|
105 |
+
"name": "stdout",
|
106 |
+
"output_type": "stream",
|
107 |
+
"text": [
|
108 |
+
"prediction 15.648413\n"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"data": {
|
113 |
+
"text/plain": [
|
114 |
+
"{'heat load': 15.648412704467773}"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
"execution_count": 18,
|
118 |
+
"metadata": {},
|
119 |
+
"output_type": "execute_result"
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"source": [
|
123 |
+
"input_example = {\n",
|
124 |
+
" \"X1\": 0.98,\n",
|
125 |
+
" \"X2\": 514.50,\n",
|
126 |
+
" \"X3\": 294.00,\n",
|
127 |
+
" \"X4\": 110.25,\n",
|
128 |
+
" \"X5\": 7.00,\n",
|
129 |
+
" \"X6\": 2,\n",
|
130 |
+
" \"X7\": 0.00,\n",
|
131 |
+
" \"X8\": 0,\n",
|
132 |
+
"}\n",
|
133 |
+
"\n",
|
134 |
+
"main(input_example)"
|
135 |
+
]
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"metadata": {
|
139 |
+
"kernelspec": {
|
140 |
+
"display_name": "mlops",
|
141 |
+
"language": "python",
|
142 |
+
"name": "python3"
|
143 |
+
},
|
144 |
+
"language_info": {
|
145 |
+
"codemirror_mode": {
|
146 |
+
"name": "ipython",
|
147 |
+
"version": 3
|
148 |
+
},
|
149 |
+
"file_extension": ".py",
|
150 |
+
"mimetype": "text/x-python",
|
151 |
+
"name": "python",
|
152 |
+
"nbconvert_exporter": "python",
|
153 |
+
"pygments_lexer": "ipython3",
|
154 |
+
"version": "3.10.8"
|
155 |
+
},
|
156 |
+
"orig_nbformat": 4
|
157 |
+
},
|
158 |
+
"nbformat": 4,
|
159 |
+
"nbformat_minor": 2
|
160 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow<3,>=2.1
|
2 |
+
pandas==1.5.2
|
3 |
+
scikit-learn==1.2.0
|
4 |
+
xgboost==1.7.2
|
5 |
+
pickle
|
scaler.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0acf51e56ef2b71f5fab9f24d0c36e0d246b5832c597bdd86e2094c543a3a87
|
3 |
+
size 710
|