Spaces:
Sleeping
Sleeping
init change to zero
Browse files
README.md
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 1 |
---
|
| 2 |
+
title: See More Details - Zero
|
| 3 |
+
short_description: Efficient Image Super-Resolution
|
| 4 |
+
emoji: 😊
|
| 5 |
colorFrom: purple
|
| 6 |
colorTo: blue
|
| 7 |
sdk: gradio
|
| 8 |
+
sdk_version: 4.21.0
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
license: mit
|
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import torch
|
|
| 4 |
import argparse
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
from PIL import Image
|
| 9 |
from copy import deepcopy
|
|
@@ -39,6 +40,7 @@ def load_img (filename, norm=True,):
|
|
| 39 |
img = img.astype(np.float32)
|
| 40 |
return img
|
| 41 |
|
|
|
|
| 42 |
def process_img (image):
|
| 43 |
img = np.array(image)
|
| 44 |
img = img / 255.
|
|
@@ -93,43 +95,22 @@ load_network(model, MODEL_NAME, strict=True, param_key='params')
|
|
| 93 |
|
| 94 |
|
| 95 |
|
| 96 |
-
title = "See More Details"
|
| 97 |
-
description = '''
|
| 98 |
|
| 99 |
-
#### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/)
|
| 100 |
|
| 101 |
-
|
| 102 |
-
#### **<sup>*</sup> Corresponding authors**
|
| 103 |
|
| 104 |
-
<details>
|
| 105 |
-
<summary> <b> Abstract</b> (click me to read)</summary>
|
| 106 |
-
<p>
|
| 107 |
-
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings
|
| 108 |
-
</p>
|
| 109 |
-
</details>
|
| 110 |
|
| 111 |
-
|
| 112 |
-
#### Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
|
| 113 |
-
|
| 114 |
-
<br>
|
| 115 |
-
|
| 116 |
-
<code>
|
| 117 |
-
@inproceedings{zamfir2024details,
|
| 118 |
-
title={See More Details: Efficient Image Super-Resolution by Experts Mining},
|
| 119 |
-
author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte},
|
| 120 |
-
booktitle={International Conference on Machine Learning},
|
| 121 |
-
year={2024},
|
| 122 |
-
organization={PMLR}
|
| 123 |
-
}
|
| 124 |
-
</code>
|
| 125 |
<br>
|
| 126 |
'''
|
| 127 |
|
| 128 |
|
| 129 |
-
article = "
|
| 130 |
|
| 131 |
#### Image,Prompts examples
|
| 132 |
examples = [
|
|
|
|
| 133 |
['images/0801x4.png'],
|
| 134 |
['images/0840x4.png'],
|
| 135 |
['images/0841x4.png'],
|
|
@@ -156,8 +137,9 @@ css = """
|
|
| 156 |
"""
|
| 157 |
|
| 158 |
demo = gr.Interface(
|
|
|
|
| 159 |
fn=process_img,
|
| 160 |
-
inputs=[gr.Image(type="pil", label="Input", value="images/
|
| 161 |
outputs=ImageSlider(label="Super-Resolved Image",
|
| 162 |
type="pil",
|
| 163 |
show_download_button=True,
|
|
@@ -170,4 +152,4 @@ demo = gr.Interface(
|
|
| 170 |
)
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
-
demo.launch()
|
|
|
|
| 4 |
import argparse
|
| 5 |
import numpy as np
|
| 6 |
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
|
| 9 |
from PIL import Image
|
| 10 |
from copy import deepcopy
|
|
|
|
| 40 |
img = img.astype(np.float32)
|
| 41 |
return img
|
| 42 |
|
| 43 |
+
@spaces.GPU(enable_queue=True)
|
| 44 |
def process_img (image):
|
| 45 |
img = np.array(image)
|
| 46 |
img = img / 255.
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
|
| 98 |
+
title = "See More Details - Efficient Image Super-Resolution"
|
| 99 |
+
description = '''
|
| 100 |
|
|
|
|
| 101 |
|
| 102 |
+
Drag the slider on the super-resolution image left and right to see the changes in the image details. SeemoRe performs x4 upscaling on the input image.
|
|
|
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
<br>
|
| 106 |
'''
|
| 107 |
|
| 108 |
|
| 109 |
+
article = ""
|
| 110 |
|
| 111 |
#### Image,Prompts examples
|
| 112 |
examples = [
|
| 113 |
+
|
| 114 |
['images/0801x4.png'],
|
| 115 |
['images/0840x4.png'],
|
| 116 |
['images/0841x4.png'],
|
|
|
|
| 137 |
"""
|
| 138 |
|
| 139 |
demo = gr.Interface(
|
| 140 |
+
theme='gradio/soft',
|
| 141 |
fn=process_img,
|
| 142 |
+
inputs=[gr.Image(type="pil", label="Input", value="images/img002x4.png"),],
|
| 143 |
outputs=ImageSlider(label="Super-Resolved Image",
|
| 144 |
type="pil",
|
| 145 |
show_download_button=True,
|
|
|
|
| 152 |
)
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
| 155 |
+
demo.launch(show_api=False)
|