Spaces:
Runtime error
Runtime error
File size: 6,778 Bytes
1907cce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import pickle
import pandas as pd
import gradio as gr
EDVAI_URL = """\
https://www.escueladedatosvivos.ai/cursos/bootcamp-de-data-science
"""
FOOTER_HTML = f"""\
<p style='text-align: center'>
<a href='{EDVAI_URL}' target='_blank'>
Proyecto demo creado en el bootcamp de EDVAI 🤗
</a>
</p>
"""
# Define params names
PARAMS_NAME = [
"orderAmount",
"orderState",
"paymentMethodRegistrationFailure",
"paymentMethodType",
"paymentMethodProvider",
"paymentMethodIssuer",
"transactionFailed",
"emailDomain",
"emailProvider",
"customerIPAddressSimplified",
"sameCity",
]
THRESHOLD = 0.44
MAIN_FOLDER = os.path.dirname(__file__)
# Model
model_filepath = "data/modelo_proyecto_final.pkl"
MODEL_PATH = os.path.join(MAIN_FOLDER, model_filepath)
with open(MODEL_PATH, "rb") as f:
model = pickle.load(f)
# Columnas
columns_filepath = "data/categories_ohe_without_fraudulent.pkl"
COLUMNS_PATH = os.path.join(MAIN_FOLDER, columns_filepath)
with open(COLUMNS_PATH, 'rb') as handle:
ohe_tr = pickle.load(handle)
# Bins - Order Amount
bins_order_filepath = "data/saved_bins_order_amount.pkl"
BINS_ORDER_PATH = os.path.join(MAIN_FOLDER, bins_order_filepath)
with open(BINS_ORDER_PATH, 'rb') as handle:
new_saved_bins_order = pickle.load(handle)
def predict_fraud_customer(*args):
request_dict = {
param_name: [param_value]
for param_name, param_value in zip(PARAMS_NAME, args)
}
# Generate pandas DataFrame
single_instance = pd.DataFrame.from_dict(request_dict)
# Manejar puntos de corte o bins
single_instance["orderAmount"] = single_instance["orderAmount"].astype(
float
)
single_instance["orderAmount"] = pd.cut(
single_instance['orderAmount'],
bins=new_saved_bins_order,
include_lowest=True,
)
# One hot encoding
single_instance_ohe = pd.get_dummies(single_instance)
single_instance_ohe = single_instance_ohe.reindex(columns=ohe_tr).fillna(0)
# Prediction
# prediction = model.predict(single_instance_ohe)
# score = int(prediction[0])
# return {"score": score}
prediction_proba = model.predict_proba(single_instance_ohe)
# Apply threshold
is_fraudulent = True if prediction_proba[:, 1] >= THRESHOLD else False
return is_fraudulent
with gr.Blocks() as demo:
gr.Markdown(
"""
# Prevención de Fraude 🕵️♀️ 🕵️♂️
"""
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Predecir si un cliente es fraudulento o no.
"""
)
order_amount_slider = gr.Slider(
label="Order amount",
minimum=1,
maximum=100,
step=1,
randomize=True,
)
order_state_radio = gr.Radio(
label="Order state",
choices=["failed", "fulfilled", "pending"],
value="failed",
)
payment_method_registration_failure_radio = gr.Radio(
label="Payment method registration failure",
choices=["True", "False"],
value="True",
)
payment_method_type_radio = gr.Radio(
label="Payment method type",
choices=["apple pay", "bitcoin", "card", "paypal"],
value="bitcoin",
)
payment_method_provider_dropdown = gr.Dropdown(
label="Payment method Provider",
choices=[
"American Express",
"Diners Club / Carte Blanche",
"Discover",
"JCB 15 digit",
"JCB 16 digit",
"Maestro",
"Mastercard",
"VISA 13 digit",
"VISA 16 digit",
"Voyager",
],
multiselect=False,
value='American Express',
)
payment_method_issuer_dropdown = gr.Dropdown(
label="Payment method issuer",
choices=[
"Bastion Banks",
"Bulwark Trust Corp.",
"Citizens First Banks",
"Fountain Financial Inc.",
"Grand Credit Corporation",
"Her Majesty Trust",
"His Majesty Bank Corp.",
"Rose Bancshares",
"Solace Banks",
"Vertex Bancorp",
"weird",
],
multiselect=False,
value='Bastion Banks',
)
transaction_failed_radio = gr.Radio(
label="Transaction failed",
choices=["True", "False"],
value="False",
)
email_domain_radio = gr.Radio(
label="Email domain",
choices=["biz", "com", "info", "net", "org", "weird"],
value="com",
)
email_provider_radio = gr.Radio(
label="Email provider",
choices=["gmail", "hotmail", "yahoo", "weird", "other"],
value="gmail",
)
customer_ip_address_radio = gr.Radio(
label="Customer IP Address",
choices=["digits_and_letters", "only_letters"],
value="digits_and_letters",
)
same_city_radio = gr.Radio(
label="Same city",
choices=["no", "yes", "unknown"],
value="unknown",
)
with gr.Column():
gr.Markdown(
"""
## Predicción
"""
)
label = gr.Label(label="Es Fraude?")
predict_btn = gr.Button(value="Evaluar")
predict_btn.click(
predict_fraud_customer,
inputs=[
order_amount_slider,
order_state_radio,
payment_method_registration_failure_radio,
payment_method_type_radio,
payment_method_provider_dropdown,
payment_method_issuer_dropdown,
transaction_failed_radio,
email_domain_radio,
email_provider_radio,
customer_ip_address_radio,
same_city_radio,
],
outputs=[label],
)
gr.Markdown(FOOTER_HTML)
def main():
demo.launch()
if __name__ == "__main__":
main()
|