Spaces:
Build error
Build error
File size: 4,895 Bytes
e4c7bc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import torch
import os
import sys
import subprocess
import spaces
from pathlib import Path
# Clone and setup the repository
@spaces.GPU
def setup_environment():
if not os.path.exists('LLaMA-Omni'):
subprocess.run(['git', 'clone', 'https://github.com/ictnlp/LLaMA-Omni'])
# Add to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'LLaMA-Omni'))
# Download models
os.makedirs('models/speech_encoder', exist_ok=True)
os.makedirs('vocoder', exist_ok=True)
# Download Whisper
if not os.path.exists('models/speech_encoder/large-v3.pt'):
import whisper
whisper.load_model("large-v3", download_root="models/speech_encoder/")
# Download vocoder
if not os.path.exists('vocoder/g_00500000'):
subprocess.run([
'wget', '-q',
'https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000',
'-P', 'vocoder/'
])
subprocess.run([
'wget', '-q',
'https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/config.json',
'-P', 'vocoder/'
])
# Global variables for model
model = None
speech_generator = None
@spaces.GPU
def load_models():
global model, speech_generator
if model is None:
setup_environment()
from omni_speech.model import OmniSpeechModel
from omni_speech.speech_generator import SpeechGeneratorCausalFull
# Load model
model_path = "ICTNLP/Llama-3.1-8B-Omni"
model = OmniSpeechModel.from_pretrained(model_path, torch_dtype=torch.float16)
model = model.cuda()
# Initialize speech generator
speech_generator = SpeechGeneratorCausalFull(
model=model,
vocoder='vocoder/g_00500000',
vocoder_cfg='vocoder/config.json'
)
@spaces.GPU(duration=60)
def process_audio(audio_path, text_input=None):
"""Process audio input and generate text and speech response."""
# Load models if needed
load_models()
from omni_speech.conversation import conv_templates
from omni_speech.utils import build_transform_audios
# Load and preprocess audio
transform = build_transform_audios()
audio_tensor = transform(audio_path)
# Prepare conversation
conv = conv_templates["llama_3"].copy()
if text_input:
conv.append_message(conv.roles[0], text_input)
else:
conv.append_message(conv.roles[0], "<Audio>")
conv.append_message(conv.roles[1], None)
# Generate response
with torch.no_grad():
# Get text response
text_output = model.generate(
audio_tensor.unsqueeze(0).cuda(),
conv.get_prompt(),
max_new_tokens=512,
temperature=0.7,
do_sample=True
)
# Generate speech response
speech_output = speech_generator.generate(
audio_tensor.unsqueeze(0).cuda(),
text_output
)
return text_output, speech_output
# Create Gradio interface
with gr.Blocks(title="LLaMA-Omni: Speech-Language Model") as demo:
gr.Markdown("""
# π¦π§ LLaMA-Omni: Seamless Speech Interaction
Upload an audio file or record your voice to interact with LLaMA-Omni.
The model will generate both text and speech responses.
""")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Speech Input"
)
text_input = gr.Textbox(
label="Text Input (Optional)",
placeholder="You can also provide text context..."
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
text_output = gr.Textbox(
label="Text Response",
lines=5
)
audio_output = gr.Audio(
label="Speech Response",
type="filepath"
)
# Handle submission
submit_btn.click(
fn=process_audio,
inputs=[audio_input, text_input],
outputs=[text_output, audio_output]
)
# Examples
gr.Examples(
examples=[
["examples/example1.wav", ""],
["examples/example2.wav", "Please explain in detail"],
],
inputs=[audio_input, text_input],
outputs=[text_output, audio_output],
fn=process_audio,
cache_examples=True
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |