File size: 5,200 Bytes
89a4326
 
cf0796f
89a4326
 
cf0796f
 
 
9d14bad
89a4326
3c8a20a
89a4326
f6af28c
acd0cc8
f6af28c
cf0796f
 
 
 
 
 
 
89a4326
cf0796f
89a4326
cf0796f
89a4326
223039f
ee37ec6
9d14bad
86b922e
 
acd0cc8
223039f
cf0796f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6af28c
9d14bad
f6af28c
cf0796f
 
 
 
 
 
 
 
f6af28c
 
cf0796f
 
 
 
36f9418
 
ce820b3
3c8a20a
cf0796f
 
 
 
 
3c8a20a
cf0796f
3c8a20a
 
 
 
 
ce820b3
3c8a20a
 
ac13334
3c8a20a
 
 
 
 
 
 
 
 
 
cf0796f
 
3c8a20a
 
cf0796f
 
 
 
 
3c8a20a
 
ac13334
3c8a20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a4326
36f9418
3c8a20a
36f9418
 
cf0796f
bde90af
cf0796f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import gradio as gr
import base64
from random import randint
from all_models import models
from io import BytesIO
from PIL import Image
from fastapi import FastAPI, Request
from deep_translator import GoogleTranslator

css_code = os.getenv("DazDinGo_CSS")

# Initialize translator
translator = GoogleTranslator(source='auto', target='en')

# Load models
models_load = {}
for model in models:
    try:
        models_load[model] = gr.load(f'models/{model}')
    except Exception as error:
        models_load[model] = gr.Interface(lambda txt: None, ['text'], ['image'])

app = FastAPI()

def gen_image(model_str, prompt):
    if model_str == 'NA':
        return None
    # Translate prompt to English {noise} {klir}
    translated_prompt = translator.translate(prompt)
    noise = str(randint(0, 4294967296))
    klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
    return models_load[model_str](f'{translated_prompt} {noise} {klir}')

def image_to_base64(image):
    buffered = BytesIO()
    if isinstance(image, str):  # if it's a file path
        img = Image.open(image)
        img.save(buffered, format="JPEG")
    else:  # if it's a PIL Image
        image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode()

# API endpoint
@app.post("/generate")
async def api_generate(request: Request):
    data = await request.json()
    model = data.get('model', models[0])
    prompt = data.get('prompt', '')
    
    if model not in models:
        return {"error": "Model not found"}
    
    # Translate prompt to English for API endpoint too
    translated_prompt = translator.translate(prompt)
    image = gen_image(model, translated_prompt)
    if image is None:
        return {"error": "Image generation failed"}
    
    base64_str = image_to_base64(image)
    
    return {
        "status": "success",
        "model": model,
        "original_prompt": prompt,
        "translated_prompt": translated_prompt,
        "image_base64": base64_str,
        "image_format": "jpeg"
    }

# Gradio Interface
def make_me():
    with gr.Row():
        with gr.Column(scale=4):
            txt_input = gr.Textbox(
                label='Your prompt:', 
                lines=4, 
                container=False, 
                elem_id="custom_textbox", 
                placeholder="Prompt"
            )
        
        with gr.Column(scale=1):
            gen_button = gr.Button('Generate image', elem_id="custom_gen_button")
            stop_button = gr.Button('Stop', variant='secondary', interactive=False, 
                                elem_id="custom_stop_button")
            
            def on_generate_click():
                return gr.Button('Generate image', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=True, elem_id="custom_stop_button")
            
            def on_stop_click():
                return gr.Button('Generate image', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button")
            
            gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button])
            stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button])
    
    with gr.Row():
        with gr.Column():
            model_dropdown = gr.Dropdown(models, label="Select Model", 
                                      value=models[0] if models else None)
            output_image = gr.Image(
                label="Generated Image", 
                width=512,
                height=768,
                elem_id="custom_image", 
                show_label=True, 
                interactive=False
            )
            
            # JSON output
            json_output = gr.JSON(label="API Response")
            
            def generate_wrapper(model_str, prompt):
                # Translate prompt to English
                translated_prompt = translator.translate(prompt)
                image = gen_image(model_str, translated_prompt)
                if image is None:
                    return None, {"error": "Generation failed"}
                
                base64_str = image_to_base64(image)
                response = {
                    "status": "success",
                    "model": model_str,
                    "original_prompt": prompt,
                    "translated_prompt": translated_prompt,
                    "image_base64": base64_str,
                    "image_format": "jpeg"
                }
                return image, response
            
            gen_event = gen_button.click(generate_wrapper, [model_dropdown, txt_input], 
                                     [output_image, json_output])
            stop_button.click(on_stop_click, inputs=None, 
                            outputs=[gen_button, stop_button], cancels=[gen_event])

# Create Gradio app
with gr.Blocks(css=css_code) as demo: 
    make_me()

# Enable queue before mounting
demo.queue()

# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)