Spaces:
Running
Running
File size: 5,200 Bytes
89a4326 cf0796f 89a4326 cf0796f 9d14bad 89a4326 3c8a20a 89a4326 f6af28c acd0cc8 f6af28c cf0796f 89a4326 cf0796f 89a4326 cf0796f 89a4326 223039f ee37ec6 9d14bad 86b922e acd0cc8 223039f cf0796f f6af28c 9d14bad f6af28c cf0796f f6af28c cf0796f 36f9418 ce820b3 3c8a20a cf0796f 3c8a20a cf0796f 3c8a20a ce820b3 3c8a20a ac13334 3c8a20a cf0796f 3c8a20a cf0796f 3c8a20a ac13334 3c8a20a 89a4326 36f9418 3c8a20a 36f9418 cf0796f bde90af cf0796f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import gradio as gr
import base64
from random import randint
from all_models import models
from io import BytesIO
from PIL import Image
from fastapi import FastAPI, Request
from deep_translator import GoogleTranslator
css_code = os.getenv("DazDinGo_CSS")
# Initialize translator
translator = GoogleTranslator(source='auto', target='en')
# Load models
models_load = {}
for model in models:
try:
models_load[model] = gr.load(f'models/{model}')
except Exception as error:
models_load[model] = gr.Interface(lambda txt: None, ['text'], ['image'])
app = FastAPI()
def gen_image(model_str, prompt):
if model_str == 'NA':
return None
# Translate prompt to English {noise} {klir}
translated_prompt = translator.translate(prompt)
noise = str(randint(0, 4294967296))
klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
return models_load[model_str](f'{translated_prompt} {noise} {klir}')
def image_to_base64(image):
buffered = BytesIO()
if isinstance(image, str): # if it's a file path
img = Image.open(image)
img.save(buffered, format="JPEG")
else: # if it's a PIL Image
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode()
# API endpoint
@app.post("/generate")
async def api_generate(request: Request):
data = await request.json()
model = data.get('model', models[0])
prompt = data.get('prompt', '')
if model not in models:
return {"error": "Model not found"}
# Translate prompt to English for API endpoint too
translated_prompt = translator.translate(prompt)
image = gen_image(model, translated_prompt)
if image is None:
return {"error": "Image generation failed"}
base64_str = image_to_base64(image)
return {
"status": "success",
"model": model,
"original_prompt": prompt,
"translated_prompt": translated_prompt,
"image_base64": base64_str,
"image_format": "jpeg"
}
# Gradio Interface
def make_me():
with gr.Row():
with gr.Column(scale=4):
txt_input = gr.Textbox(
label='Your prompt:',
lines=4,
container=False,
elem_id="custom_textbox",
placeholder="Prompt"
)
with gr.Column(scale=1):
gen_button = gr.Button('Generate image', elem_id="custom_gen_button")
stop_button = gr.Button('Stop', variant='secondary', interactive=False,
elem_id="custom_stop_button")
def on_generate_click():
return gr.Button('Generate image', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=True, elem_id="custom_stop_button")
def on_stop_click():
return gr.Button('Generate image', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button")
gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button])
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button])
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(models, label="Select Model",
value=models[0] if models else None)
output_image = gr.Image(
label="Generated Image",
width=512,
height=768,
elem_id="custom_image",
show_label=True,
interactive=False
)
# JSON output
json_output = gr.JSON(label="API Response")
def generate_wrapper(model_str, prompt):
# Translate prompt to English
translated_prompt = translator.translate(prompt)
image = gen_image(model_str, translated_prompt)
if image is None:
return None, {"error": "Generation failed"}
base64_str = image_to_base64(image)
response = {
"status": "success",
"model": model_str,
"original_prompt": prompt,
"translated_prompt": translated_prompt,
"image_base64": base64_str,
"image_format": "jpeg"
}
return image, response
gen_event = gen_button.click(generate_wrapper, [model_dropdown, txt_input],
[output_image, json_output])
stop_button.click(on_stop_click, inputs=None,
outputs=[gen_button, stop_button], cancels=[gen_event])
# Create Gradio app
with gr.Blocks(css=css_code) as demo:
make_me()
# Enable queue before mounting
demo.queue()
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |