Spaces:
Running
Running
File size: 8,712 Bytes
89a4326 cf0796f 89a4326 cf0796f 9d14bad 89a4326 e44c20d 89a4326 f6af28c 9d14bad f6af28c cf0796f 89a4326 cf0796f 89a4326 cf0796f 89a4326 223039f ee37ec6 9d14bad 86b922e 389611d 223039f cf0796f f6af28c 9d14bad f6af28c cf0796f f6af28c cf0796f ce820b3 ac13334 cf0796f e44c20d cf0796f ac13334 e44c20d ac13334 ce820b3 ac13334 e44c20d ce820b3 ac13334 e44c20d ac13334 e44c20d cf0796f ac13334 cf0796f ac13334 e44c20d cf0796f ac13334 9d14bad ac13334 89a4326 cf0796f e44c20d ce820b3 fd88ff9 cf0796f bde90af cf0796f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import gradio as gr
import base64
from random import randint
from all_models import models
from io import BytesIO
from PIL import Image
from fastapi import FastAPI, Request
from deep_translator import GoogleTranslator
# CSS yang lebih lengkap dengan berbagai elemen styling
css_code = """
/* General Styling */
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
min-height: 100vh;
padding: 20px;
}
/* Textbox Styling */
#custom_textbox {
min-height: 150px;
padding: 15px;
border-radius: 12px;
border: 2px solid #e0e0e0;
font-size: 16px;
background: rgba(255, 255, 255, 0.9);
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05);
transition: all 0.3s ease;
}
#custom_textbox:focus {
border-color: #4facfe;
box-shadow: 0 0 0 3px rgba(79, 172, 254, 0.2);
outline: none;
}
/* Button Styling */
#custom_gen_button {
background: linear-gradient(to right, #4facfe 0%, #00f2fe 100%);
color: white;
border: none;
border-radius: 12px;
padding: 12px 24px;
font-weight: 600;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
width: 100%;
margin-bottom: 10px;
}
#custom_gen_button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.15);
}
#custom_stop_button {
background: linear-gradient(to right, #ff4d4d 0%, #f97878 100%);
color: white;
border: none;
border-radius: 12px;
padding: 12px 24px;
font-weight: 600;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
width: 100%;
}
#custom_stop_button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.15);
}
/* Image Styling */
#custom_image {
border-radius: 16px;
box-shadow: 0 8px 24px rgba(0, 0, 0, 0.1);
transition: all 0.3s ease;
background: white;
padding: 10px;
max-width: 100%;
height: auto;
}
#custom_image:hover {
transform: scale(1.01);
box-shadow: 0 12px 28px rgba(0, 0, 0, 0.15);
}
/* Dropdown Styling */
.dark .dropdown-option {
background: #2d3748 !important;
}
.dark .dropdown-option:hover {
background: #4a5568 !important;
}
/* Panel Styling */
.gr-box {
border-radius: 16px !important;
background: rgba(255, 255, 255, 0.8) !important;
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.2) !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
padding: 20px !important;
}
/* Label Styling */
.gr-label {
font-weight: 600 !important;
color: #2d3748 !important;
margin-bottom: 8px !important;
font-size: 16px !important;
}
/* Responsive Adjustments */
@media (max-width: 768px) {
.gradio-container {
padding: 10px;
}
#custom_textbox {
min-height: 120px;
font-size: 14px;
}
#custom_gen_button, #custom_stop_button {
padding: 10px 15px;
font-size: 14px;
}
}
/* Animation for loading state */
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1; }
100% { opacity: 0.6; }
}
.loading {
animation: pulse 1.5s infinite;
}
"""
# Initialize translator
translator = GoogleTranslator(source='auto', target='en')
# Load models
models_load = {}
for model in models:
try:
models_load[model] = gr.load(f'models/{model}')
except Exception as error:
models_load[model] = gr.Interface(lambda txt: None, ['text'], ['image'])
app = FastAPI()
def gen_image(model_str, prompt):
if model_str == 'NA':
return None
# Translate prompt to English {noise} {klir}
translated_prompt = translator.translate(prompt)
noise = str(randint(0, 4294967296))
klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
return models_load[model_str](f'{translated_prompt}')
def image_to_base64(image):
buffered = BytesIO()
if isinstance(image, str): # if it's a file path
img = Image.open(image)
img.save(buffered, format="JPEG")
else: # if it's a PIL Image
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode()
# API endpoint
@app.post("/generate")
async def api_generate(request: Request):
data = await request.json()
model = data.get('model', models[0])
prompt = data.get('prompt', '')
if model not in models:
return {"error": "Model not found"}
# Translate prompt to English for API endpoint too
translated_prompt = translator.translate(prompt)
image = gen_image(model, translated_prompt)
if image is None:
return {"error": "Image generation failed"}
base64_str = image_to_base64(image)
return {
"status": "success",
"model": model,
"original_prompt": prompt,
"translated_prompt": translated_prompt,
"image_base64": base64_str,
"image_format": "jpeg"
}
# Gradio Interface
def make_me():
with gr.Row():
with gr.Column(scale=4):
txt_input = gr.Textbox(
label='Your prompt:',
lines=4,
container=False,
elem_id="custom_textbox",
placeholder="Describe the image you want to generate...",
interactive=True
)
with gr.Column(scale=1):
gen_button = gr.Button('Generate image', elem_id="custom_gen_button", variant="primary")
stop_button = gr.Button('Stop', variant='secondary', interactive=False,
elem_id="custom_stop_button")
def on_generate_click():
return gr.Button('Generating...', interactive=False, elem_id="custom_gen_button", variant="stop"), gr.Button('Stop', variant='secondary', interactive=True, elem_id="custom_stop_button")
def on_stop_click():
return gr.Button('Generate image', elem_id="custom_gen_button", variant="primary"), gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button")
gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button])
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button])
with gr.Row():
with gr.Column():
model_dropdown = gr.Dropdown(models, label="Select Model",
value=models[0] if models else None,
interactive=True,
elem_classes=["model-selector"])
output_image = gr.Image(
label="Generated Image",
width=512,
height=768,
elem_id="custom_image",
show_label=True,
interactive=False
)
# JSON output
json_output = gr.JSON(label="API Response", elem_id="api-response")
def generate_wrapper(model_str, prompt):
# Translate prompt to English
translated_prompt = translator.translate(prompt)
image = gen_image(model_str, translated_prompt)
if image is None:
return None, {"error": "Generation failed"}
base64_str = image_to_base64(image)
response = {
"status": "success",
"model": model_str,
"original_prompt": prompt,
"translated_prompt": translated_prompt,
"image_base64": base64_str,
"image_format": "jpeg"
}
return image, response
gen_event = gen_button.click(generate_wrapper, [model_dropdown, txt_input],
[output_image, json_output])
stop_button.click(on_stop_click, inputs=None,
outputs=[gen_button, stop_button], cancels=[gen_event])
# Create Gradio app
with gr.Blocks(css=css_code, theme=gr.themes.Soft()) as demo:
gr.Markdown("# AI Image Generator", elem_id="title")
gr.Markdown("Generate stunning images from text prompts using advanced AI models", elem_id="subtitle")
make_me()
# Enable queue before mounting
demo.queue()
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |