manu's picture
Update app.py
82b43ed verified
raw
history blame
22.7 kB
# app.py — Unified ColPali + MCP Agent (indices-only search, agent receives images)
import os
import base64
import tempfile
from io import BytesIO
from urllib.request import urlretrieve
from typing import List, Tuple, Dict, Any
import gradio as gr
from gradio_pdf import PDF
import torch
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from colpali_engine.models import ColQwen2, ColQwen2Processor
# Optional (used by the streaming agent)
from openai import OpenAI
# =============================
# Globals & Config
# =============================
api_key_env = os.getenv("OPENAI_API_KEY", "").strip()
ds: List[torch.Tensor] = [] # page embeddings
images: List[Image.Image] = [] # PIL images in page order
current_pdf_path: str | None = None
device_map = (
"cuda:0"
if torch.cuda.is_available()
else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)
# =============================
# Load Model & Processor
# =============================
model = ColQwen2.from_pretrained(
"vidore/colqwen2-v1.0",
torch_dtype=torch.bfloat16,
device_map=device_map,
attn_implementation="flash_attention_2",
).eval()
processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0")
# =============================
# Utilities
# =============================
def _ensure_model_device() -> str:
dev = (
"cuda:0"
if torch.cuda.is_available()
else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)
if str(model.device) != dev:
model.to(dev)
return dev
def encode_image_to_base64(image: Image.Image) -> str:
"""Encodes a PIL image to base64 (JPEG)."""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# =============================
# Indexing Helpers
# =============================
def convert_files(pdf_path: str) -> List[Image.Image]:
"""Convert a single PDF path into a list of PIL Images (pages)."""
imgs = convert_from_path(pdf_path, thread_count=4)
if len(imgs) >= 800:
raise gr.Error("The number of images in the dataset should be less than 800.")
return imgs
def index_gpu(imgs: List[Image.Image]) -> str:
"""Embed a list of images (pages) with ColQwen2 (ColPali) and store in globals."""
global ds, images
device = _ensure_model_device()
# reset previous dataset
ds = []
images = imgs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: processor.process_images(x).to(model.device),
)
for batch_doc in tqdm(dataloader, desc="Indexing pages"):
with torch.no_grad():
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return f"Indexed {len(images)} pages successfully."
def index_from_path(pdf_path: str) -> str:
imgs = convert_files(pdf_path)
return index_gpu(imgs)
def index_from_url(url: str) -> Tuple[str, str]:
"""
Download a PDF from URL and index it.
Returns: (status_message, saved_pdf_path)
"""
tmp_dir = tempfile.mkdtemp(prefix="colpali_")
local_path = os.path.join(tmp_dir, "document.pdf")
urlretrieve(url, local_path)
status = index_from_path(local_path)
return status, local_path
def _build_image_parts_from_indices(indices: List[int]) -> List[Dict[str, Any]]:
"""Turn page indices into OpenAI vision content parts."""
parts: List[Dict[str, Any]] = []
seen = sorted({i for i in indices if 0 <= i < len(images)})
for idx in seen:
b64 = encode_image_to_base64(images[idx])
parts.append({
"type": "input_image",
"image_url": f"data:image/jpeg;base64,{b64}",
})
return parts
# =============================
# MCP Tools
# =============================
def search(query: str, k: int = 5) -> List[int]:
"""
Search within an indexed PDF and return ONLY the indices of the most relevant pages (0-based).
MCP tool description:
- name: mcp_test_search
- description: Search within the indexed PDF for the most relevant pages and return their 0-based indices only.
- input_schema:
type: object
properties:
query: {type: string, description: "User query in natural language."}
k: {type: integer, minimum: 1, maximum: 50, default: 5, description: "Number of top pages to retrieve (before neighbor expansion)."}
required: ["query"]
Returns:
List[int]: Sorted unique 0-based indices of pages to inspect (includes neighbor expansion).
"""
global ds, images
if not images or not ds:
return []
k = max(1, min(int(k), len(images)))
device = _ensure_model_device()
# Encode query
with torch.no_grad():
batch_query = processor.process_queries([query]).to(model.device)
embeddings_query = model(**batch_query)
q_vecs = list(torch.unbind(embeddings_query.to("cpu")))
# Score and select top-k
scores = processor.score(q_vecs, ds, device=device)
top_k_indices = scores[0].topk(k).indices.tolist()
print(query, top_k_indices)
# Neighbor expansion for context
base = set(top_k_indices)
expanded = set(base)
for i in base:
expanded.add(i - 1)
expanded.add(i + 1)
expanded = {i for i in expanded if 0 <= i < len(images)} # strict bounds
return sorted(expanded)
# =============================
# Gradio UI — Unified App
# =============================
SYSTEM = (
"""
You are a PDF research agent with two tools:
• mcp_test_search(query: string, k: int) → returns ONLY 0-based page indices.
• mcp_test_get_pages(indices: int[]) → returns the actual page images (as base64 images) for vision.
Policy & procedure:
1) Break the user task into 1–4 targeted sub-queries (in English).
2) For each sub-query, call mcp_test_search to get indices; Once you receive the indices to use, print "Received" and stop generating. Images will be injected in your stream.
3) Continue reasoning using ONLY the provided images. If info is insufficient, iterate: refine sub-queries and call the tools again. You may make further tool calls later in the conversation as needed.
Grounding & citations:
• Use ONLY information visible in the provided page images.
• After any claim, cite as (p.<page>).
• If an answer is not present, say “Not found in the provided pages.”
Final deliverable:
• Write a clear, standalone Markdown answer in the user's language. For lists of dates/items, include a concise table.
• Do not refer to “the above” or “previous messages”.
"""
).strip()
DEFAULT_MCP_SERVER_URL = "https://manu-mcp-test.hf.space/gradio_api/mcp/"
DEFAULT_MCP_SERVER_LABEL = "colpali_rag"
DEFAULT_ALLOWED_TOOLS = "mcp_test_search,mcp_test_get_pages"
def stream_agent(question: str,
api_key: str,
model: str,
server_url: str,
server_label: str,
require_approval: str,
allowed_tools: str):
"""
Streaming generator for the agent.
NOTE: We rely on OpenAI's MCP tool routing. The mcp_test_search tool returns indices only;
the agent is instructed to call mcp_get_pages next to receive images and continue reasoning.
"""
final_text = "Answer:"
summary_text = "Reasoning:"
log_lines = ["Log"]
if not api_key:
yield "⚠️ **Please provide your OpenAI API key.**", "", ""
return
client = OpenAI(api_key=api_key)
prev_response_id: Optional[str] = None
tools = [{
"type": "mcp",
"server_label": server_label or DEFAULT_MCP_SERVER_LABEL,
"server_url": server_url or DEFAULT_MCP_SERVER_URL,
"allowed_tools": [t.strip() for t in (allowed_tools or DEFAULT_ALLOWED_TOOLS).split(",") if t.strip()],
"require_approval": require_approval or "never",
}]
# seed pages once (optional)
seed_indices = search(question, k=5) or []
pending_indices = list(seed_indices)
def run_round(round_idx: int, attached_indices: List[int]):
nonlocal prev_response_id
assembled_text = ""
assembled_summary = ""
# Will hold the most recent indices returned by mcp_test_search in THIS stream
last_search_indices: List[int] = []
# Build user parts (attach any seed pages we already have)
parts: List[Dict[str, Any]] = [{"type": "input_text", "text": question if round_idx == 1 else "Continue with new pages."}]
parts += _build_image_parts_from_indices(attached_indices)
# First call includes system; follow-ups use previous_response_id
if prev_response_id:
req_input = [{"role": "user", "content": parts}]
else:
req_input = [
{"role": "system", "content": SYSTEM},
{"role": "user", "content": parts},
]
req_kwargs = dict(
model=model_name,
input=req_input,
reasoning={"effort": "medium", "summary": "auto"},
tools=tools,
store=True,
)
if prev_response_id:
req_kwargs["previous_response_id"] = prev_response_id
# Helper to try extracting a JSON int array from tool result text
def _maybe_parse_indices(chunk: str) -> List[int]:
import json, re
# Find the last bracketed JSON array in the chunk
arrs = re.findall(r'\[[^\]]*\]', chunk)
for s in reversed(arrs):
try:
val = json.loads(s)
if isinstance(val, list) and all(isinstance(x, int) for x in val):
return sorted({x for x in val if isinstance(x, int)})
except Exception:
pass
return []
tool_result_buffer = "" # accumulate tool result deltas
try:
with client.responses.stream(**req_kwargs) as stream:
for event in stream:
etype = getattr(event, "type", "")
if etype == "response.output_text.delta":
assembled_text += event.delta
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
elif etype == "response.reasoning_summary_text.delta":
assembled_summary += event.delta
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
# Capture tool *arguments* in the log for transparency (optional)
elif etype in ("response.function_call_arguments.delta", "response.tool_call_arguments.delta"):
log_lines.append(str(event.delta))
# ⬇️ NEW: capture tool *results* (indices JSON) from MCP
elif etype.startswith("response.tool_result"):
# Different SDKs expose .delta or .output_text; handle both
delta = getattr(event, "delta", "") or getattr(event, "output_text", "")
if delta:
tool_result_buffer += str(delta)
# opportunistic parse so UI can progress early
parsed_now = _maybe_parse_indices(tool_result_buffer)
if parsed_now:
print(parsed_now)
last_search_indices = parsed_now
log_lines.append(f"[tool-result] indices={last_search_indices}")
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
# Finalize, remember response id for follow-ups
_final = stream.get_final_response()
try:
prev_response_id = getattr(_final, "id", None)
except Exception:
prev_response_id = None
# If the model produced search results this round, hand them back to the controller
if last_search_indices:
return sorted(set(last_search_indices))
# Otherwise, just render whatever text we have
yield assembled_text or " ", assembled_summary or " ", "\n".join(log_lines[-400:])
return None
except Exception as e:
log_lines.append(f"[round {round_idx}] stream error: {e}")
yield f"❌ {e}", assembled_summary or "", "\n".join(log_lines[-400:])
return None
# Controller: iterate rounds until model stops searching
max_rounds = 3
round_idx = 1
while round_idx <= max_rounds:
# Start a round with any pending images we already have
next_indices = None
for final_md, summary_md, log_md in run_round(round_idx, pending_indices):
yield final_md, summary_md, log_md
# If the model called mcp_test_search, we got indices back; fetch those pages next.
# (We ignore pending_indices now—move to the model-chosen ones.)
if isinstance(next_indices, list) and next_indices:
pending_indices = next_indices
# Attach those pages in a **new** GPT-5 call using previous_response_id
round_idx += 1
continue
# No tool search results this round → we’re done
break
return
CUSTOM_CSS = """
:root {
--bg: #0e1117;
--panel: #111827;
--accent: #7c3aed;
--accent-2: #06b6d4;
--text: #e5e7eb;
--muted: #9ca3af;
--border: #1f2937;
}
.gradio-container {max-width: 1180px !important; margin: 0 auto !important;}
body {background: radial-gradient(1200px 600px at 20% -10%, rgba(124,58,237,.25), transparent 60%),
radial-gradient(1000px 500px at 120% 10%, rgba(6,182,212,.2), transparent 60%),
var(--bg) !important;}
.app-header {
display:flex; gap:16px; align-items:center; padding:20px 18px; margin:8px 0 12px;
border:1px solid var(--border); border-radius:20px;
background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
box-shadow: 0 10px 30px rgba(0,0,0,.25), inset 0 1px 0 rgba(255,255,255,.05);
}
.app-header .icon {
width:48px; height:48px; display:grid; place-items:center; border-radius:14px;
background: linear-gradient(135deg, var(--accent), var(--accent-2));
color:white; font-size:26px;
}
.app-header h1 {font-size:22px; margin:0; color:var(--text); letter-spacing:.2px;}
.app-header p {margin:2px 0 0; color:var(--muted); font-size:14px;}
.card {
border:1px solid var(--border); border-radius:18px; padding:14px 16px;
background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
box-shadow: 0 12px 28px rgba(0,0,0,.18), inset 0 1px 0 rgba(255,255,255,.04);
}
.gr-button-primary {border-radius:12px !important; font-weight:600;}
.gradio-container .tabs {border-radius:16px; overflow:hidden; border:1px solid var(--border);}
.markdown-wrap {min-height: 260px;}
.summary-wrap {min-height: 180px;}
.gr-markdown, .gr-prose { color: var(--text) !important; }
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {color: #f3f4f6;}
.gr-markdown a {color: var(--accent-2); text-decoration: none;}
.gr-markdown a:hover {text-decoration: underline;}
.gr-markdown table {width: 100%; border-collapse: collapse; margin: 10px 0 16px;}
.gr-markdown th, .gr-markdown td {border: 1px solid var(--border); padding: 8px 10px;}
.gr-markdown th {background: rgba(255,255,255,.03);}
.gr-markdown pre, .gr-markdown code { background: #0b1220; color: #eaeaf0; border-radius: 12px; border: 1px solid #172036; }
.gr-markdown pre {padding: 12px 14px; overflow:auto;}
.gr-markdown blockquote { border-left: 4px solid var(--accent); padding: 6px 12px; margin: 8px 0; color: #d1d5db; background: rgba(124,58,237,.06); border-radius: 8px; }
.log-box { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; white-space: pre-wrap; color: #d1d5db; background:#0b1220; border:1px solid #172036; border-radius:14px; padding:12px; max-height:280px; overflow:auto; }
"""
def build_ui():
theme = gr.themes.Soft()
with gr.Blocks(title="ColPali PDF RAG + MCP Agent (Indices-only)", theme=theme, css=CUSTOM_CSS) as demo:
gr.HTML(
"""
<div class="app-header">
<div class="icon">📚</div>
<div>
<h1>ColPali PDF Search + Streaming Agent</h1>
<p>Index PDFs with ColQwen2 (ColPali). The search tool returns page indices only; the agent fetches images and reasons visually.</p>
</div>
</div>
"""
)
with gr.Tab("1) Index & Preview"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
index_btn = gr.Button("📥 Index Uploaded PDF", variant="secondary")
url_box = gr.Textbox(
label="Or index from URL",
placeholder="https://example.com/file.pdf",
value="",
)
index_url_btn = gr.Button("🌐 Load From URL", variant="secondary")
status_box = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=2):
pdf_view = PDF(label="PDF Preview")
# wiring
def handle_upload(file):
global current_pdf_path
if file is None:
return "Please upload a PDF.", None
path = getattr(file, "name", file)
status = index_from_path(path)
current_pdf_path = path
return status, path
def handle_url(url: str):
global current_pdf_path
if not url or not url.lower().endswith(".pdf"):
return "Please provide a direct PDF URL ending in .pdf", None
status, path = index_from_url(url)
current_pdf_path = path
return status, path
index_btn.click(handle_upload, inputs=[pdf_input], outputs=[status_box, pdf_view])
index_url_btn.click(handle_url, inputs=[url_box], outputs=[status_box, pdf_view])
with gr.Tab("2) Ask (Direct — returns indices)"):
with gr.Row():
with gr.Column(scale=1):
query_box = gr.Textbox(placeholder="Enter your question…", label="Query", lines=4)
k_slider = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results (k)", value=5)
search_button = gr.Button("🔍 Search", variant="primary")
get_pages_button = gr.Button("🔍 Get Pages", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="Indices (0-based)", lines=12, placeholder="[0, 1, 2, ...]")
search_button.click(search, inputs=[query_box, k_slider], outputs=[output_text])
with gr.Tab("3) Agent (Streaming)"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Group():
question = gr.Textbox(
label="Your question",
placeholder="Enter your question…",
lines=8,
elem_classes=["card"],
)
run_btn = gr.Button("Run", variant="primary")
with gr.Accordion("Connection & Model", open=False, elem_classes=["card"]):
with gr.Row():
api_key_box = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
value=api_key_env,
)
model_box = gr.Dropdown(
label="Model",
choices=["gpt-5", "gpt-4.1", "gpt-4o"],
value="gpt-5",
)
with gr.Row():
server_url_box = gr.Textbox(
label="MCP Server URL",
value=DEFAULT_MCP_SERVER_URL,
)
server_label_box = gr.Textbox(
label="MCP Server Label",
value=DEFAULT_MCP_SERVER_LABEL,
)
with gr.Row():
allowed_tools_box = gr.Textbox(
label="Allowed Tools (comma-separated)",
value=DEFAULT_ALLOWED_TOOLS,
)
require_approval_box = gr.Dropdown(
label="Require Approval",
choices=["never", "auto", "always"],
value="never",
)
with gr.Column(scale=3):
with gr.Tab("Answer (Markdown)"):
final_md = gr.Markdown(value="", elem_classes=["card", "markdown-wrap"])
with gr.Tab("Live Summary (Markdown)"):
summary_md = gr.Markdown(value="", elem_classes=["card", "summary-wrap"])
with gr.Tab("Event Log"):
log_md = gr.Markdown(value="", elem_classes=["card", "log-box"])
run_btn.click(
stream_agent,
inputs=[question, api_key_box, model_box, server_url_box, server_label_box, require_approval_box, allowed_tools_box],
outputs=[final_md, summary_md, log_md],
)
return demo
if __name__ == "__main__":
demo = build_ui()
# mcp_server=True exposes this app's MCP endpoint at /gradio_api/mcp/
demo.queue(max_size=5).launch(debug=True, mcp_server=True)