Update app.py
Browse files
app.py
CHANGED
|
@@ -25,9 +25,80 @@ model = ColQwen2.from_pretrained(
|
|
| 25 |
device_map="cuda:0", # or "mps" if on Apple Silicon
|
| 26 |
# attn_implementation="flash_attention_2", # should work on A100
|
| 27 |
).eval()
|
| 28 |
-
processor = ColQwen2Processor.from_pretrained("manu/colqwen2-v1.0
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
@spaces.GPU
|
| 33 |
def search(query: str, ds, images, k):
|
|
@@ -50,7 +121,10 @@ def search(query: str, ds, images, k):
|
|
| 50 |
for idx in top_k_indices:
|
| 51 |
results.append((images[idx], f"Page {idx}"))
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
def index(files, ds):
|
|
@@ -126,9 +200,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 126 |
# Define the actions
|
| 127 |
search_button = gr.Button("🔍 Search", variant="primary")
|
| 128 |
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
|
|
|
| 129 |
|
| 130 |
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
| 131 |
-
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
|
| 132 |
|
| 133 |
if __name__ == "__main__":
|
| 134 |
demo.queue(max_size=10).launch(debug=True)
|
|
|
|
| 25 |
device_map="cuda:0", # or "mps" if on Apple Silicon
|
| 26 |
# attn_implementation="flash_attention_2", # should work on A100
|
| 27 |
).eval()
|
| 28 |
+
processor = ColQwen2Processor.from_pretrained("manu/colqwen2-v1.0")
|
| 29 |
|
| 30 |
|
| 31 |
+
def encode_image_to_base64(image):
|
| 32 |
+
"""Encodes a PIL image to a base64 string."""
|
| 33 |
+
buffered = BytesIO()
|
| 34 |
+
image.save(buffered, format="JPEG")
|
| 35 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def query_gpt4o_mini(query, images):
|
| 39 |
+
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
| 40 |
+
from openai import OpenAI
|
| 41 |
+
|
| 42 |
+
images = [encode_image_to_base64(image) for image in images]
|
| 43 |
+
client = OpenAI(api_key=os.env.get("OPENAI_KEY"))
|
| 44 |
+
PROMPT = """
|
| 45 |
+
You are a smart assistant designed to answer questions about a PDF document.
|
| 46 |
+
You are given relevant information in the form of PDF pages. Use them to construct a response to the question, and cite your sources.
|
| 47 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 48 |
+
Give detailed and extensive answers, only containing info in the pages you are given.
|
| 49 |
+
Answer in the same language as the query.
|
| 50 |
+
|
| 51 |
+
Query: {query}
|
| 52 |
+
PDF pages:
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
response = client.chat.completions.create(
|
| 56 |
+
model="gpt-4o-mini",
|
| 57 |
+
messages=[
|
| 58 |
+
{
|
| 59 |
+
"role": "user",
|
| 60 |
+
"content": [
|
| 61 |
+
{
|
| 62 |
+
"type": "text",
|
| 63 |
+
"text": PROMPT.format(query=query)
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"type": "image_url",
|
| 67 |
+
"image_url": {
|
| 68 |
+
"url": f"data:image/jpeg;base64,{base64_images[0]}"
|
| 69 |
+
},
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"type": "image_url",
|
| 73 |
+
"image_url": {
|
| 74 |
+
"url": f"data:image/jpeg;base64,{base64_images[1]}"
|
| 75 |
+
},
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"type": "image_url",
|
| 79 |
+
"image_url": {
|
| 80 |
+
"url": f"data:image/jpeg;base64,{base64_images[2]}"
|
| 81 |
+
},
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"type": "image_url",
|
| 85 |
+
"image_url": {
|
| 86 |
+
"url": f"data:image/jpeg;base64,{base64_images[3]}"
|
| 87 |
+
},
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"type": "image_url",
|
| 91 |
+
"image_url": {
|
| 92 |
+
"url": f"data:image/jpeg;base64,{base64_images[4]}"
|
| 93 |
+
},
|
| 94 |
+
},
|
| 95 |
+
],
|
| 96 |
+
}
|
| 97 |
+
],
|
| 98 |
+
max_tokens=500,
|
| 99 |
+
)
|
| 100 |
+
return response.choices[0].message.content
|
| 101 |
+
|
| 102 |
|
| 103 |
@spaces.GPU
|
| 104 |
def search(query: str, ds, images, k):
|
|
|
|
| 121 |
for idx in top_k_indices:
|
| 122 |
results.append((images[idx], f"Page {idx}"))
|
| 123 |
|
| 124 |
+
# Generate response from GPT-4o-mini
|
| 125 |
+
ai_response = "Activate AI response by forking and adding your GPT-4o key" # query_gpt4o_mini(query, results)
|
| 126 |
+
|
| 127 |
+
return results, ai_response
|
| 128 |
|
| 129 |
|
| 130 |
def index(files, ds):
|
|
|
|
| 200 |
# Define the actions
|
| 201 |
search_button = gr.Button("🔍 Search", variant="primary")
|
| 202 |
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
| 203 |
+
output_text = gr.Textbox(label="AI Response", placeholder="Generated response based on retrieved documents")
|
| 204 |
|
| 205 |
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
| 206 |
+
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery, output_text])
|
| 207 |
|
| 208 |
if __name__ == "__main__":
|
| 209 |
demo.queue(max_size=10).launch(debug=True)
|