Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from pdf2image import convert_from_path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torch.utils.data import DataLoader
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from transformers import AutoProcessor
|
| 9 |
+
|
| 10 |
+
from custom_colbert.models.paligemma_colbert_architecture import ColPali
|
| 11 |
+
from custom_colbert.trainer.retrieval_evaluator import CustomEvaluator
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def process_images(processor, images, max_length: int = 50):
|
| 15 |
+
texts_doc = ["Describe the image."] * len(images)
|
| 16 |
+
images = [image.convert("RGB") for image in images]
|
| 17 |
+
|
| 18 |
+
batch_doc = processor(
|
| 19 |
+
text=texts_doc,
|
| 20 |
+
images=images,
|
| 21 |
+
return_tensors="pt",
|
| 22 |
+
padding="longest",
|
| 23 |
+
max_length=max_length + processor.image_seq_length,
|
| 24 |
+
)
|
| 25 |
+
return batch_doc
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def process_queries(processor, queries, mock_image, max_length: int = 50):
|
| 29 |
+
texts_query = []
|
| 30 |
+
for query in queries:
|
| 31 |
+
query = f"Question: {query}<unused0><unused0><unused0><unused0><unused0>"
|
| 32 |
+
texts_query.append(query)
|
| 33 |
+
|
| 34 |
+
batch_query = processor(
|
| 35 |
+
images=[mock_image.convert("RGB")] * len(texts_query),
|
| 36 |
+
# NOTE: the image is not used in batch_query but it is required for calling the processor
|
| 37 |
+
text=texts_query,
|
| 38 |
+
return_tensors="pt",
|
| 39 |
+
padding="longest",
|
| 40 |
+
max_length=max_length + processor.image_seq_length,
|
| 41 |
+
)
|
| 42 |
+
del batch_query["pixel_values"]
|
| 43 |
+
|
| 44 |
+
batch_query["input_ids"] = batch_query["input_ids"][..., processor.image_seq_length :]
|
| 45 |
+
batch_query["attention_mask"] = batch_query["attention_mask"][..., processor.image_seq_length :]
|
| 46 |
+
return batch_query
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def search(query: str, ds, images) -> str:
|
| 50 |
+
qs = []
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
batch_query = process_queries(processor, [query], mock_image)
|
| 53 |
+
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
| 54 |
+
embeddings_query = model(**batch_query)
|
| 55 |
+
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 56 |
+
|
| 57 |
+
# run evaluation
|
| 58 |
+
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
| 59 |
+
scores = retriever_evaluator.evaluate(qs, ds)
|
| 60 |
+
|
| 61 |
+
return f"The most relevant page is {scores.argmax(axis=1)}", images[scores.argmax(axis=1)]
|
| 62 |
+
# return f"Query: {query}, most relevant page: 1, {len(ds)}", images[1]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def index(file):
|
| 66 |
+
"""Example script to run inference with ColPali"""
|
| 67 |
+
images = []
|
| 68 |
+
for f in file:
|
| 69 |
+
images.extend(convert_from_path(f))
|
| 70 |
+
|
| 71 |
+
# run inference - docs
|
| 72 |
+
dataloader = DataLoader(
|
| 73 |
+
images,
|
| 74 |
+
batch_size=4,
|
| 75 |
+
shuffle=False,
|
| 76 |
+
collate_fn=lambda x: process_images(processor, x),
|
| 77 |
+
)
|
| 78 |
+
ds = ["test", "double test"]
|
| 79 |
+
for batch_doc in tqdm(dataloader):
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
| 82 |
+
embeddings_doc = model(**batch_doc)
|
| 83 |
+
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
| 84 |
+
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
| 88 |
+
# Load model
|
| 89 |
+
model_name = "coldoc/colpali-3b-mix-448"
|
| 90 |
+
model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
|
| 91 |
+
model.load_adapter(model_name)
|
| 92 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 93 |
+
device = model.device
|
| 94 |
+
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
| 95 |
+
|
| 96 |
+
with gr.Blocks() as demo:
|
| 97 |
+
gr.Markdown("# PDF to 🤗 Dataset")
|
| 98 |
+
gr.Markdown("## 1️⃣ Upload PDFs")
|
| 99 |
+
file = gr.File(file_types=["pdf"], file_count="multiple")
|
| 100 |
+
|
| 101 |
+
gr.Markdown("## 2️⃣ Convert the PDFs and upload")
|
| 102 |
+
convert_button = gr.Button("🔄 Convert and upload")
|
| 103 |
+
message = gr.Textbox("Files not yet uploaded")
|
| 104 |
+
embeds = gr.State()
|
| 105 |
+
imgs = gr.State()
|
| 106 |
+
|
| 107 |
+
# Define the actions
|
| 108 |
+
convert_button.click(
|
| 109 |
+
index,
|
| 110 |
+
inputs=[file],
|
| 111 |
+
outputs=[message, embeds, imgs]
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
gr.Markdown("## 3️⃣ Search")
|
| 115 |
+
query = gr.Textbox(placeholder="Enter your query here")
|
| 116 |
+
search_button = gr.Button("🔍 Search")
|
| 117 |
+
message2 = gr.Textbox("Query not yet set")
|
| 118 |
+
output_img = gr.Image()
|
| 119 |
+
|
| 120 |
+
search_button.click(
|
| 121 |
+
search, inputs=[query, embeds, imgs],
|
| 122 |
+
outputs=[message2, output_img]
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
demo.queue(max_size=10).launch(debug=True)
|