Spaces:
Sleeping
Sleeping
Update everything a bit !
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import spaces
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
-
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
| 7 |
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
| 8 |
from colpali_engine.utils.colpali_processing_utils import (
|
| 9 |
process_images,
|
|
@@ -13,19 +12,18 @@ from pdf2image import convert_from_path
|
|
| 13 |
from PIL import Image
|
| 14 |
from torch.utils.data import DataLoader
|
| 15 |
from tqdm import tqdm
|
| 16 |
-
from transformers import AutoProcessor
|
| 17 |
|
| 18 |
-
|
| 19 |
-
model_name = "vidore/colpali-v1.2"
|
| 20 |
-
token = os.environ.get("HF_TOKEN")
|
| 21 |
-
model = ColPali.from_pretrained(
|
| 22 |
-
"vidore/colpaligemma-3b-pt-448-base", torch_dtype=torch.bfloat16, device_map="cuda", token = token).eval()
|
| 23 |
|
| 24 |
-
model.load_adapter(model_name)
|
| 25 |
-
model = model.eval()
|
| 26 |
-
processor = AutoProcessor.from_pretrained(model_name, token = token)
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
@spaces.GPU
|
|
@@ -37,15 +35,13 @@ def search(query: str, ds, images, k):
|
|
| 37 |
|
| 38 |
qs = []
|
| 39 |
with torch.no_grad():
|
| 40 |
-
batch_query = process_queries(
|
| 41 |
-
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
| 42 |
embeddings_query = model(**batch_query)
|
| 43 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 44 |
|
| 45 |
-
|
| 46 |
-
scores = retriever_evaluator.evaluate(qs, ds)
|
| 47 |
|
| 48 |
-
top_k_indices = scores
|
| 49 |
|
| 50 |
results = []
|
| 51 |
for idx in top_k_indices:
|
|
@@ -75,21 +71,19 @@ def convert_files(files):
|
|
| 75 |
@spaces.GPU
|
| 76 |
def index_gpu(images, ds):
|
| 77 |
"""Example script to run inference with ColPali"""
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# run inference - docs
|
| 80 |
dataloader = DataLoader(
|
| 81 |
images,
|
| 82 |
batch_size=4,
|
| 83 |
shuffle=False,
|
| 84 |
-
collate_fn=lambda x: process_images(
|
| 85 |
)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 89 |
-
if device != model.device:
|
| 90 |
-
model.to(device)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
for batch_doc in tqdm(dataloader):
|
| 94 |
with torch.no_grad():
|
| 95 |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
|
@@ -98,8 +92,6 @@ def index_gpu(images, ds):
|
|
| 98 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 99 |
|
| 100 |
|
| 101 |
-
def get_example():
|
| 102 |
-
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
|
| 103 |
|
| 104 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 105 |
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models π")
|
|
@@ -128,11 +120,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 128 |
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
| 129 |
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
| 130 |
|
| 131 |
-
# with gr.Row():
|
| 132 |
-
# gr.Examples(
|
| 133 |
-
# examples=get_example(),
|
| 134 |
-
# inputs=[file, query],
|
| 135 |
-
# )
|
| 136 |
|
| 137 |
# Define the actions
|
| 138 |
search_button = gr.Button("π Search", variant="primary")
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
|
|
|
| 6 |
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
| 7 |
from colpali_engine.utils.colpali_processing_utils import (
|
| 8 |
process_images,
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
from torch.utils.data import DataLoader
|
| 14 |
from tqdm import tqdm
|
|
|
|
| 15 |
|
| 16 |
+
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
|
| 20 |
+
model = ColQwen2.from_pretrained(
|
| 21 |
+
"manu/colqwen2-v1.0-alpha",
|
| 22 |
+
torch_dtype=torch.bfloat16,
|
| 23 |
+
device_map="cuda:0", # or "mps" if on Apple Silicon
|
| 24 |
+
).eval()
|
| 25 |
+
processor = ColQwen2Processor.from_pretrained("manu/colqwen2-v1.0-alpha")
|
| 26 |
+
|
| 27 |
|
| 28 |
|
| 29 |
@spaces.GPU
|
|
|
|
| 35 |
|
| 36 |
qs = []
|
| 37 |
with torch.no_grad():
|
| 38 |
+
batch_query = processor.process_queries([query]).to(model.device)
|
|
|
|
| 39 |
embeddings_query = model(**batch_query)
|
| 40 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
| 41 |
|
| 42 |
+
scores = processor.score(qs, ds, device=device)
|
|
|
|
| 43 |
|
| 44 |
+
top_k_indices = scores[0].topk(k).indices.tolist()
|
| 45 |
|
| 46 |
results = []
|
| 47 |
for idx in top_k_indices:
|
|
|
|
| 71 |
@spaces.GPU
|
| 72 |
def index_gpu(images, ds):
|
| 73 |
"""Example script to run inference with ColPali"""
|
| 74 |
+
|
| 75 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 76 |
+
if device != model.device:
|
| 77 |
+
model.to(device)
|
| 78 |
+
|
| 79 |
# run inference - docs
|
| 80 |
dataloader = DataLoader(
|
| 81 |
images,
|
| 82 |
batch_size=4,
|
| 83 |
shuffle=False,
|
| 84 |
+
collate_fn=lambda x: processor.process_images(x).to(model.device),
|
| 85 |
)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
for batch_doc in tqdm(dataloader):
|
| 88 |
with torch.no_grad():
|
| 89 |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
|
|
|
| 92 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
| 93 |
|
| 94 |
|
|
|
|
|
|
|
| 95 |
|
| 96 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 97 |
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models π")
|
|
|
|
| 120 |
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
| 121 |
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
# Define the actions
|
| 125 |
search_button = gr.Button("π Search", variant="primary")
|