Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,43 +8,9 @@ from torch.utils.data import DataLoader
|
|
| 8 |
from tqdm import tqdm
|
| 9 |
from transformers import AutoProcessor
|
| 10 |
|
| 11 |
-
from
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def process_images(processor, images, max_length: int = 50):
|
| 16 |
-
texts_doc = ["Describe the image."] * len(images)
|
| 17 |
-
images = [image.convert("RGB") for image in images]
|
| 18 |
-
|
| 19 |
-
batch_doc = processor(
|
| 20 |
-
text=texts_doc,
|
| 21 |
-
images=images,
|
| 22 |
-
return_tensors="pt",
|
| 23 |
-
padding="longest",
|
| 24 |
-
max_length=max_length + processor.image_seq_length,
|
| 25 |
-
)
|
| 26 |
-
return batch_doc
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def process_queries(processor, queries, mock_image, max_length: int = 50):
|
| 30 |
-
texts_query = []
|
| 31 |
-
for query in queries:
|
| 32 |
-
query = f"Question: {query}<unused0><unused0><unused0><unused0><unused0>"
|
| 33 |
-
texts_query.append(query)
|
| 34 |
-
|
| 35 |
-
batch_query = processor(
|
| 36 |
-
images=[mock_image.convert("RGB")] * len(texts_query),
|
| 37 |
-
# NOTE: the image is not used in batch_query but it is required for calling the processor
|
| 38 |
-
text=texts_query,
|
| 39 |
-
return_tensors="pt",
|
| 40 |
-
padding="longest",
|
| 41 |
-
max_length=max_length + processor.image_seq_length,
|
| 42 |
-
)
|
| 43 |
-
del batch_query["pixel_values"]
|
| 44 |
-
|
| 45 |
-
batch_query["input_ids"] = batch_query["input_ids"][..., processor.image_seq_length :]
|
| 46 |
-
batch_query["attention_mask"] = batch_query["attention_mask"][..., processor.image_seq_length :]
|
| 47 |
-
return batch_query
|
| 48 |
|
| 49 |
|
| 50 |
def search(query: str, ds, images):
|
|
@@ -71,7 +37,7 @@ def index(file, ds):
|
|
| 71 |
# run inference - docs
|
| 72 |
dataloader = DataLoader(
|
| 73 |
images,
|
| 74 |
-
batch_size=
|
| 75 |
shuffle=False,
|
| 76 |
collate_fn=lambda x: process_images(processor, x),
|
| 77 |
)
|
|
|
|
| 8 |
from tqdm import tqdm
|
| 9 |
from transformers import AutoProcessor
|
| 10 |
|
| 11 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
| 12 |
+
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
| 13 |
+
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def search(query: str, ds, images):
|
|
|
|
| 37 |
# run inference - docs
|
| 38 |
dataloader = DataLoader(
|
| 39 |
images,
|
| 40 |
+
batch_size=4,
|
| 41 |
shuffle=False,
|
| 42 |
collate_fn=lambda x: process_images(processor, x),
|
| 43 |
)
|