Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| from dataclasses import dataclass | |
| from catboost import CatBoostRegressor | |
| from sklearn.ensemble import ( | |
| AdaBoostRegressor, | |
| GradientBoostingRegressor, | |
| RandomForestRegressor, | |
| ) | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.metrics import r2_score | |
| from sklearn.neighbors import KNeighborsRegressor | |
| from sklearn.tree import DecisionTreeRegressor | |
| from xgboost import XGBRegressor | |
| from src.exception import CustomException | |
| from src.logger import logging | |
| from src.utils import save_object,evaluate_models | |
| class ModelTrainerConfig: | |
| trained_model_file_path=os.path.join("artifacts","model.pkl") | |
| class ModelTrainer: | |
| def __init__(self): | |
| self.model_trainer_config=ModelTrainerConfig() | |
| def initiate_model_trainer(self,train_array,test_array): | |
| try: | |
| logging.info("Split training and test input data") | |
| X_train,y_train,X_test,y_test=( | |
| train_array[:,:-1], | |
| train_array[:,-1], | |
| test_array[:,:-1], | |
| test_array[:,-1] | |
| ) | |
| models = { | |
| "Random Forest": RandomForestRegressor(), | |
| "Decision Tree": DecisionTreeRegressor(), | |
| "Gradient Boosting": GradientBoostingRegressor(), | |
| "Linear Regression": LinearRegression(), | |
| "XGBRegressor": XGBRegressor(), | |
| "CatBoosting Regressor": CatBoostRegressor(verbose=False), | |
| "AdaBoost Regressor": AdaBoostRegressor(), | |
| } | |
| params={ | |
| "Decision Tree": { | |
| 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], | |
| # 'splitter':['best','random'], | |
| # 'max_features':['sqrt','log2'], | |
| }, | |
| "Random Forest":{ | |
| # 'criterion':['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], | |
| # 'max_features':['sqrt','log2',None], | |
| 'n_estimators': [8,16,32,64,128,256] | |
| }, | |
| "Gradient Boosting":{ | |
| # 'loss':['squared_error', 'huber', 'absolute_error', 'quantile'], | |
| 'learning_rate':[.1,.01,.05,.001], | |
| 'subsample':[0.6,0.7,0.75,0.8,0.85,0.9], | |
| # 'criterion':['squared_error', 'friedman_mse'], | |
| # 'max_features':['auto','sqrt','log2'], | |
| 'n_estimators': [8,16,32,64,128,256] | |
| }, | |
| "Linear Regression":{}, | |
| "XGBRegressor":{ | |
| 'learning_rate':[.1,.01,.05,.001], | |
| 'n_estimators': [8,16,32,64,128,256] | |
| }, | |
| "CatBoosting Regressor":{ | |
| 'depth': [6,8,10], | |
| 'learning_rate': [0.01, 0.05, 0.1], | |
| 'iterations': [30, 50, 100] | |
| }, | |
| "AdaBoost Regressor":{ | |
| 'learning_rate':[.1,.01,0.5,.001], | |
| # 'loss':['linear','square','exponential'], | |
| 'n_estimators': [8,16,32,64,128,256] | |
| } | |
| } | |
| model_report:dict=evaluate_models(X_train=X_train,y_train=y_train,X_test=X_test,y_test=y_test, | |
| models=models,param=params) | |
| ## To get best model score from dict | |
| best_model_score = max(sorted(model_report.values())) | |
| ## To get best model name from dict | |
| best_model_name = list(model_report.keys())[ | |
| list(model_report.values()).index(best_model_score) | |
| ] | |
| best_model = models[best_model_name] | |
| if best_model_score<0.6: | |
| raise CustomException("No best model found") | |
| logging.info(f"Best found model on both training and testing dataset") | |
| save_object( | |
| file_path=self.model_trainer_config.trained_model_file_path, | |
| obj=best_model | |
| ) | |
| predicted=best_model.predict(X_test) | |
| r2_square = r2_score(y_test, predicted) | |
| return r2_square | |
| except Exception as e: | |
| raise CustomException(e,sys) |