rossmann / app.py
manish72's picture
Upload 16 files
6654368 verified
# import streamlit as st
# import pandas as pd
# import pickle
# # Load your trained model #pickle.load() requires a file object opened in binary read mode ('rb').
# with open('models/sales_prediction_pipeline.pkl', 'rb') as file:
# model = pickle.load(file)
# # Function to predict sales
# def predict_sales(input_data):
# # Make predictions using the loaded model
# sales_prediction = model.predict(input_data)
# return sales_prediction
# # ///////////////////////////////////////////// Streamlit app //////////////////////////////////////////
# def main():
# st.title('Sales Prediction App')
# st.image("images\\r1.jpg", caption="Rossmann")
# # Input widgets
# PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
# # -----------------------------------------------------------------------------------------------
# StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
# Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
# # Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
# StateHoliday = st.radio("State Holiday", ["Yes", "No"])
# StateHoliday = 1 if StateHoliday == "Yes" else 0
# SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
# SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
# Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
# Promo = 1 if Promo == "store is participating" else 0
# # ----------------------------------------------------------------------------------------
# Store = st.slider("Store", 1, 1115)
# Customers = st.slider("Customers", 0, 7388)
# CompetitionDistance = st.slider("Competition Distance", 20, 75860)
# CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
# CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
# # ----------------------------------------------------------------------------------------
# # Store user inputs
# input_data = pd.DataFrame({
# 'PromoInterval': [PromoInterval],
# 'StoreType': [StoreType],
# 'Assortment': [Assortment],
# 'StateHoliday': [StateHoliday],
# 'Store': [Store],
# 'Customers': [Customers],
# 'Promo': [Promo],
# 'SchoolHoliday': [SchoolHoliday],
# 'CompetitionDistance': [CompetitionDistance],
# 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
# 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
# })
# # Display input data
# st.subheader('Input Data:')
# st.write(input_data)
# # Predict sales
# if st.button('Predict Sales'):
# prediction = predict_sales(input_data)[0]
# formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
# st.write('Predicted Sales:', formatted_prediction)
# if __name__ == '__main__':
# main()
# # Record at index 795018:
# # PromoInterval Jan,Apr,Jul,Oct
# # StoreType Small Shop
# # Assortment basic
# # StateHoliday 0
# # SchoolHoliday 0
# # Promo 1
# # Store 650
# # Customers 636
# # CompetitionDistance 1420
# # CompetitionOpenSinceMonth 10
# # CompetitionOpenSinceYear 2012
# # Sales 6322
# # Name: 795018, dtype: object
import streamlit as st
import pandas as pd
import pickle
# Load your trained pipeline
with open(r'models/sales_prediction_pipeline.pkl', 'rb') as file: # Use raw string or forward slashes
model = pickle.load(file)
# Function to predict sales
def predict_sales(input_data):
# Make predictions using the loaded model
sales_prediction = model.predict(input_data)
return sales_prediction
# Streamlit app
def main():
st.title('Sales Prediction App')
st.image("images/r1.jpg", caption="Rossmann") # Use forward slashes for image path
# Input widgets
PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
# Encode StateHoliday as 1 for 'Yes' and 0 for 'No'
StateHoliday = st.radio("State Holiday", ["Yes", "No"])
StateHoliday = 1 if StateHoliday == "Yes" else 0
SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
Promo = 1 if Promo == "store is participating" else 0
Store = st.slider("Store", 1, 1115)
Customers = st.slider("Customers", 0, 7388)
CompetitionDistance = st.slider("Competition Distance", 20, 75860)
CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
# Store user inputs
input_data = pd.DataFrame({
'PromoInterval': [PromoInterval],
'StoreType': [StoreType],
'Assortment': [Assortment],
'StateHoliday': [StateHoliday],
'Store': [Store],
'Customers': [Customers],
'Promo': [Promo],
'SchoolHoliday': [SchoolHoliday],
'CompetitionDistance': [CompetitionDistance],
'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
})
# Display input data
st.subheader('Input Data:')
st.write(input_data)
# Predict sales
if st.button('Predict Sales'):
try:
prediction = predict_sales(input_data)[0] # Get the first prediction
formatted_prediction = "{:.2f}".format(prediction) # Format prediction to two decimal points
st.write('Predicted Sales:', formatted_prediction)
except Exception as e:
st.error(f"An error occurred: {e}")
if __name__ == '__main__':
main()