# import streamlit as st | |
# import pandas as pd | |
# import pickle | |
# # Load your trained model #pickle.load() requires a file object opened in binary read mode ('rb'). | |
# with open('models/sales_prediction_pipeline.pkl', 'rb') as file: | |
# model = pickle.load(file) | |
# # Function to predict sales | |
# def predict_sales(input_data): | |
# # Make predictions using the loaded model | |
# sales_prediction = model.predict(input_data) | |
# return sales_prediction | |
# # ///////////////////////////////////////////// Streamlit app ////////////////////////////////////////// | |
# def main(): | |
# st.title('Sales Prediction App') | |
# st.image("images\\r1.jpg", caption="Rossmann") | |
# # Input widgets | |
# PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec']) | |
# # ----------------------------------------------------------------------------------------------- | |
# StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"]) | |
# Assortment = st.radio("Assortment", ["basic", "extra", "extended"]) | |
# # Encode StateHoliday as 1 for 'Yes' and 0 for 'No' -------------------------------------- | |
# StateHoliday = st.radio("State Holiday", ["Yes", "No"]) | |
# StateHoliday = 1 if StateHoliday == "Yes" else 0 | |
# SchoolHoliday = st.radio("School Holiday", ["Yes", "No"]) | |
# SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0 | |
# Promo = st.radio("Promotion", ["store is participating", "store is not participating"]) | |
# Promo = 1 if Promo == "store is participating" else 0 | |
# # ---------------------------------------------------------------------------------------- | |
# Store = st.slider("Store", 1, 1115) | |
# Customers = st.slider("Customers", 0, 7388) | |
# CompetitionDistance = st.slider("Competition Distance", 20, 75860) | |
# CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12) | |
# CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015) | |
# # ---------------------------------------------------------------------------------------- | |
# # Store user inputs | |
# input_data = pd.DataFrame({ | |
# 'PromoInterval': [PromoInterval], | |
# 'StoreType': [StoreType], | |
# 'Assortment': [Assortment], | |
# 'StateHoliday': [StateHoliday], | |
# 'Store': [Store], | |
# 'Customers': [Customers], | |
# 'Promo': [Promo], | |
# 'SchoolHoliday': [SchoolHoliday], | |
# 'CompetitionDistance': [CompetitionDistance], | |
# 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth], | |
# 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear] | |
# }) | |
# # Display input data | |
# st.subheader('Input Data:') | |
# st.write(input_data) | |
# # Predict sales | |
# if st.button('Predict Sales'): | |
# prediction = predict_sales(input_data)[0] | |
# formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points | |
# st.write('Predicted Sales:', formatted_prediction) | |
# if __name__ == '__main__': | |
# main() | |
# # Record at index 795018: | |
# # PromoInterval Jan,Apr,Jul,Oct | |
# # StoreType Small Shop | |
# # Assortment basic | |
# # StateHoliday 0 | |
# # SchoolHoliday 0 | |
# # Promo 1 | |
# # Store 650 | |
# # Customers 636 | |
# # CompetitionDistance 1420 | |
# # CompetitionOpenSinceMonth 10 | |
# # CompetitionOpenSinceYear 2012 | |
# # Sales 6322 | |
# # Name: 795018, dtype: object | |
import streamlit as st | |
import pandas as pd | |
import pickle | |
# Load your trained pipeline | |
with open(r'models/sales_prediction_pipeline.pkl', 'rb') as file: # Use raw string or forward slashes | |
model = pickle.load(file) | |
# Function to predict sales | |
def predict_sales(input_data): | |
# Make predictions using the loaded model | |
sales_prediction = model.predict(input_data) | |
return sales_prediction | |
# Streamlit app | |
def main(): | |
st.title('Sales Prediction App') | |
st.image("images/r1.jpg", caption="Rossmann") # Use forward slashes for image path | |
# Input widgets | |
PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec']) | |
StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"]) | |
Assortment = st.radio("Assortment", ["basic", "extra", "extended"]) | |
# Encode StateHoliday as 1 for 'Yes' and 0 for 'No' | |
StateHoliday = st.radio("State Holiday", ["Yes", "No"]) | |
StateHoliday = 1 if StateHoliday == "Yes" else 0 | |
SchoolHoliday = st.radio("School Holiday", ["Yes", "No"]) | |
SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0 | |
Promo = st.radio("Promotion", ["store is participating", "store is not participating"]) | |
Promo = 1 if Promo == "store is participating" else 0 | |
Store = st.slider("Store", 1, 1115) | |
Customers = st.slider("Customers", 0, 7388) | |
CompetitionDistance = st.slider("Competition Distance", 20, 75860) | |
CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12) | |
CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015) | |
# Store user inputs | |
input_data = pd.DataFrame({ | |
'PromoInterval': [PromoInterval], | |
'StoreType': [StoreType], | |
'Assortment': [Assortment], | |
'StateHoliday': [StateHoliday], | |
'Store': [Store], | |
'Customers': [Customers], | |
'Promo': [Promo], | |
'SchoolHoliday': [SchoolHoliday], | |
'CompetitionDistance': [CompetitionDistance], | |
'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth], | |
'CompetitionOpenSinceYear': [CompetitionOpenSinceYear] | |
}) | |
# Display input data | |
st.subheader('Input Data:') | |
st.write(input_data) | |
# Predict sales | |
if st.button('Predict Sales'): | |
try: | |
prediction = predict_sales(input_data)[0] # Get the first prediction | |
formatted_prediction = "{:.2f}".format(prediction) # Format prediction to two decimal points | |
st.write('Predicted Sales:', formatted_prediction) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
if __name__ == '__main__': | |
main() | |