manish72 commited on
Commit
3ff3327
·
verified ·
1 Parent(s): a255b1a

Upload 11 files

Browse files
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import joblib
5
+
6
+ # Load your trained model
7
+ model = joblib.load('models\model2.pkl')
8
+
9
+ # Function to predict sales
10
+ def predict_sales(input_data):
11
+ # Make predictions using the loaded model
12
+ sales_prediction = model.predict(input_data)
13
+ return sales_prediction
14
+
15
+ # Streamlit app
16
+ def main():
17
+ st.title('Sales Prediction App')
18
+
19
+ # Input widgets
20
+ PromoInterval = st.selectbox("Promo Interval", ['No Promotion', 'Jan,Apr,Jul,Oct', 'Feb,May,Aug,Nov', 'Mar,Jun,Sept,Dec'])
21
+
22
+ # -----------------------------------------------------------------------------------------------
23
+ StoreType = st.radio("StoreType", ["Small Shop", "Medium Store", "Large Store", "Hypermarket"])
24
+ Assortment = st.radio("Assortment", ["basic", "extra", "extended"])
25
+
26
+
27
+ # Encode StateHoliday as 1 for 'Yes' and 0 for 'No' --------------------------------------
28
+ StateHoliday = st.radio("State Holiday", ["Yes", "No"])
29
+ StateHoliday = 1 if StateHoliday == "Yes" else 0
30
+
31
+ SchoolHoliday = st.radio("School Holiday", ["Yes", "No"])
32
+ SchoolHoliday = 1 if SchoolHoliday == "Yes" else 0
33
+
34
+ Promo = st.radio("Promotion", ["store is participating", "store is not participating"])
35
+ Promo = 1 if Promo == "store is participating" else 0
36
+ # ----------------------------------------------------------------------------------------
37
+
38
+
39
+ Store = st.slider("Store", 1, 1115)
40
+ Customers = st.slider("Customers", 0, 7388)
41
+ CompetitionDistance = st.slider("Competition Distance", 20, 75860)
42
+ CompetitionOpenSinceMonth = st.slider("Competition Open Since Month", 1, 12)
43
+ CompetitionOpenSinceYear = st.slider("Competition Open Since Year", 1998, 2015)
44
+ # ----------------------------------------------------------------------------------------
45
+
46
+ # Store user inputs
47
+ input_data = pd.DataFrame({
48
+ 'PromoInterval': [PromoInterval],
49
+ 'StoreType': [StoreType],
50
+ 'Assortment': [Assortment],
51
+ 'StateHoliday': [StateHoliday],
52
+ 'Store': [Store],
53
+ 'Customers': [Customers],
54
+ 'Promo': [Promo],
55
+ 'SchoolHoliday': [SchoolHoliday],
56
+ 'CompetitionDistance': [CompetitionDistance],
57
+ 'CompetitionOpenSinceMonth': [CompetitionOpenSinceMonth],
58
+ 'CompetitionOpenSinceYear': [CompetitionOpenSinceYear]
59
+ })
60
+
61
+ # Display input data
62
+ st.subheader('Input Data:')
63
+ st.write(input_data)
64
+
65
+ # Predict sales
66
+ # if st.button('Predict Sales'):
67
+ # prediction = predict_sales(input_data)
68
+ # st.write('Predicted Sales:', prediction)
69
+
70
+ if st.button('Predict Sales'):
71
+ prediction = predict_sales(input_data)[0]
72
+ formatted_prediction = "{:.2f}".format(prediction) # Format prediction to display two decimal points
73
+ st.write('Predicted Sales:', formatted_prediction)
74
+
75
+
76
+ if __name__ == '__main__':
77
+ main()
78
+
79
+
80
+
81
+ # Record at index 795018:
82
+ # PromoInterval Jan,Apr,Jul,Oct
83
+ # StoreType Small Shop
84
+ # Assortment basic
85
+ # StateHoliday 0
86
+ # Store 650
87
+ # Customers 636
88
+ # Promo 1
89
+ # SchoolHoliday 0
90
+ # CompetitionDistance 1420
91
+ # CompetitionOpenSinceMonth 10
92
+ # CompetitionOpenSinceYear 2012
93
+ # Sales 6322
94
+ # Name: 795018, dtype: object
models/Rossmann_Model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a4264097df040b74694426b0b55cd70008790bec56cdeefa4eb7de0144096d1
3
+ size 22628002
models/model1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f44f412a489f3fe693806f91c0b379f6fa5ba685d29f905dacaf223449ac6279
3
+ size 22632250
models/model2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb4f99c82338b7cb8917fe1b0734c96c98df89ae01f9fb9617cd94ab967005
3
+ size 24157012
pages/Data Overview.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+
4
+ # st.title("hi")
5
+
6
+ # Function for data overview
7
+ def show_data_overview():
8
+ # Load data from CSV file
9
+ data = pd.read_csv("Dataset\Rossmann_Cleaned_data.csv")
10
+
11
+ # Display data overview
12
+ st.subheader("Data Overview")
13
+ st.write(data)
14
+
15
+
16
+ show_data_overview() # Call the function to show data overview