Upload 10 files
Browse files- .gitattributes +1 -0
- app.py +164 -0
- images/Out1.png +0 -0
- images/Out2.png +0 -0
- images/t2.png +0 -0
- model/tweet_model/fingerprint.pb +3 -0
- model/tweet_model/keras_metadata.pb +3 -0
- model/tweet_model/saved_model.pb +3 -0
- model/tweet_model/variables/variables.data-00000-of-00001 +3 -0
- model/tweet_model/variables/variables.index +0 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model/tweet_model/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# importing Libraries
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import PIL
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
from nltk.stem import WordNetLemmatizer
|
| 8 |
+
from nltk.tokenize import RegexpTokenizer
|
| 9 |
+
import re
|
| 10 |
+
import string
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import nltk
|
| 14 |
+
|
| 15 |
+
try: # Check if wordnet is installed
|
| 16 |
+
nltk.find("corpora/wordnet.zip")
|
| 17 |
+
except LookupError:
|
| 18 |
+
nltk.download('wordnet')
|
| 19 |
+
|
| 20 |
+
# ----------------------------------------------------------------------------------
|
| 21 |
+
# read files
|
| 22 |
+
try:
|
| 23 |
+
acronyms_dict, contractions_dict, stops
|
| 24 |
+
except NameError:
|
| 25 |
+
acronyms_dict = pd.read_json("helper/acronym.json", typ = "series")
|
| 26 |
+
contractions_dict = pd.read_json("helper/contractions.json", typ = "series")
|
| 27 |
+
stops = list(pd.read_csv('helper/stopwords.csv').values.flatten())
|
| 28 |
+
|
| 29 |
+
# ----------------------------------------------------------------------------------
|
| 30 |
+
# Defining tokenizer
|
| 31 |
+
regexp = RegexpTokenizer("[\w']+")
|
| 32 |
+
|
| 33 |
+
# preprocess Function
|
| 34 |
+
def preprocess(text):
|
| 35 |
+
|
| 36 |
+
text = text.lower() # lowercase
|
| 37 |
+
text = text.strip() # whitespaces
|
| 38 |
+
|
| 39 |
+
# Removing html tags
|
| 40 |
+
html = re.compile(r'<.*?>')
|
| 41 |
+
text = html.sub(r'', text) # html tags
|
| 42 |
+
|
| 43 |
+
# Removing emoji patterns
|
| 44 |
+
emoji_pattern = re.compile("["
|
| 45 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
| 46 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
| 47 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
| 48 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
| 49 |
+
u"\U00002702-\U000027B0"
|
| 50 |
+
u"\U000024C2-\U0001F251"
|
| 51 |
+
"]+", flags = re.UNICODE)
|
| 52 |
+
text = emoji_pattern.sub(r'', text) # unicode char
|
| 53 |
+
|
| 54 |
+
# Removing urls
|
| 55 |
+
http = "https?://\S+|www\.\S+" # matching strings beginning with http (but not just "http")
|
| 56 |
+
pattern = r"({})".format(http) # creating pattern
|
| 57 |
+
text = re.sub(pattern, "", text) # remove urls
|
| 58 |
+
|
| 59 |
+
# Removing twitter usernames
|
| 60 |
+
pattern = r'@[\w_]+'
|
| 61 |
+
text = re.sub(pattern, "", text) # remove @twitter usernames
|
| 62 |
+
|
| 63 |
+
# Removing punctuations and numbers
|
| 64 |
+
punct_str = string.punctuation + string.digits
|
| 65 |
+
punct_str = punct_str.replace("'", "")
|
| 66 |
+
punct_str = punct_str.replace("-", "")
|
| 67 |
+
text = text.translate(str.maketrans('', '', punct_str)) # punctuation and numbers
|
| 68 |
+
|
| 69 |
+
# Replacing "-" in text with empty space
|
| 70 |
+
text = text.replace("-", " ") # "-"
|
| 71 |
+
|
| 72 |
+
# Substituting acronyms
|
| 73 |
+
words = []
|
| 74 |
+
for word in regexp.tokenize(text):
|
| 75 |
+
if word in acronyms_dict.index:
|
| 76 |
+
words = words + acronyms_dict[word].split()
|
| 77 |
+
else:
|
| 78 |
+
words = words + word.split()
|
| 79 |
+
text = ' '.join(words) # acronyms
|
| 80 |
+
|
| 81 |
+
# Substituting Contractions
|
| 82 |
+
words = []
|
| 83 |
+
for word in regexp.tokenize(text):
|
| 84 |
+
if word in contractions_dict.index:
|
| 85 |
+
words = words + contractions_dict[word].split()
|
| 86 |
+
else:
|
| 87 |
+
words = words + word.split()
|
| 88 |
+
text = " ".join(words) # contractions
|
| 89 |
+
|
| 90 |
+
punct_str = string.punctuation
|
| 91 |
+
text = text.translate(str.maketrans('', '', punct_str)) # punctuation again to remove "'"
|
| 92 |
+
|
| 93 |
+
# lemmatization
|
| 94 |
+
lemmatizer = WordNetLemmatizer()
|
| 95 |
+
text = " ".join([lemmatizer.lemmatize(word) for word in regexp.tokenize(text)]) # lemmatize
|
| 96 |
+
|
| 97 |
+
# Stopwords Removal
|
| 98 |
+
text = ' '.join([word for word in regexp.tokenize(text) if word not in stops]) # stopwords
|
| 99 |
+
|
| 100 |
+
# Removing all characters except alphabets and " " (space)
|
| 101 |
+
filter = string.ascii_letters + " "
|
| 102 |
+
text = "".join([chr for chr in text if chr in filter]) # remove all characters except alphabets and " " (space)
|
| 103 |
+
|
| 104 |
+
# Removing words with one alphabet occuring more than 3 times continuously
|
| 105 |
+
pattern = r'\b\w*?(.)\1{2,}\w*\b'
|
| 106 |
+
text = re.sub(pattern, "", text).strip() # remove words with one alphabet occuring more than 3 times continuously
|
| 107 |
+
|
| 108 |
+
# Removing words with less than 3 characters
|
| 109 |
+
short_words = r'\b\w{1,2}\b'
|
| 110 |
+
text = re.sub(short_words, "", text) # remove words with less than 3 characters
|
| 111 |
+
|
| 112 |
+
# return final output
|
| 113 |
+
return text
|
| 114 |
+
|
| 115 |
+
# ================================================================================================================================================================
|
| 116 |
+
# STREAMLIT
|
| 117 |
+
# ================================================================================================================================================================
|
| 118 |
+
|
| 119 |
+
# App Devolopment Starts
|
| 120 |
+
st.set_page_config(layout="wide")
|
| 121 |
+
st.write("# A Predictive Analysis of Disaster Tweets")
|
| 122 |
+
|
| 123 |
+
img = Image.open("images/t2.png")
|
| 124 |
+
st.image(img)
|
| 125 |
+
|
| 126 |
+
tweet = st.text_input(label = "Type or paste your tweet here", value = "")
|
| 127 |
+
|
| 128 |
+
# Defining a function to store the model in streamlit cache memory
|
| 129 |
+
@st.cache_resource
|
| 130 |
+
def cache_model(model_name):
|
| 131 |
+
model = tf.keras.models.load_model(model_name)
|
| 132 |
+
return model
|
| 133 |
+
|
| 134 |
+
model = cache_model("model/tweet_model") #--------------------------- model
|
| 135 |
+
|
| 136 |
+
# if user gives any input
|
| 137 |
+
if len(tweet) > 0:
|
| 138 |
+
clean_tweet = preprocess(tweet) # cleans tweet
|
| 139 |
+
y_pred = model.predict([clean_tweet]) # gives probability of class = 1
|
| 140 |
+
y_pred_num = int(np.round(y_pred)[0][0]) # get final prediction of output class
|
| 141 |
+
|
| 142 |
+
if y_pred_num == 0:
|
| 143 |
+
# st.write(f"#### Non-Disaster tweet with disaster probability {round(y_pred[0][0]*100, 4)}%")
|
| 144 |
+
st.write(f"#### 🌞🌞This tweet is not flagged as a disaster, but with a probability of {round(y_pred[0][0]*100, 4)}% that it might be. ")
|
| 145 |
+
else:
|
| 146 |
+
st.write(f"#### 🚩🚩High probability ( {round(y_pred[0][0]*100, 4)}%) indicates that this tweet is related to a disaster🚨🚨.")
|
| 147 |
+
|
| 148 |
+
# ================================================================================================================================================================
|
| 149 |
+
# -------------------------------------------------------------------- Example of Tweets -----------------------------------------------------------------------
|
| 150 |
+
# ================================================================================================================================================================
|
| 151 |
+
|
| 152 |
+
# ---------------------------- Disaster Tweets -------------------------------
|
| 153 |
+
# "🚨 Just felt a strong earthquake! Stay safe everyone! #earthquake #safetyfirst" [93.62]
|
| 154 |
+
# "⚠️ Urgent: Massive wildfire approaching our community. Evacuation orders in effect. Please heed warnings and evacuate immediately. #wildfire #safety" [99.30]
|
| 155 |
+
# "🌪️ Tornado warning in effect for our area. Take shelter now! #tornadowarning #safetyfirst" [92.84]
|
| 156 |
+
# "🌊 Coastal areas under tsunami alert. Seek higher ground immediately! #tsunami #emergencyalert" [99.54]
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# ---------------------------- Non disaster Tweets -------------------------------
|
| 160 |
+
# "Enjoying a peaceful evening with a good book and a cup of tea. #Relaxation" [4.52]
|
| 161 |
+
# "Excited for the weekend! Planning a movie night with friends. 🍿🎬 #FridayFeeling" [3.27]
|
| 162 |
+
# "Just finished a great workout session at the gym. Feeling energized! 💪 #FitnessGoals" [6.17]
|
| 163 |
+
# "Spent the day exploring a new hiking trail. Nature is so beautiful! 🌳 #OutdoorAdventure" [19.44]
|
| 164 |
+
# "Cooked a delicious homemade dinner tonight. #Foodie #HomeChef" [7.1]
|
images/Out1.png
ADDED
|
images/Out2.png
ADDED
|
images/t2.png
ADDED
|
model/tweet_model/fingerprint.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:376041931ca2355913e3c847180a34408d8ffa2ebd01ddbd964f4fce7cb476d0
|
| 3 |
+
size 57
|
model/tweet_model/keras_metadata.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7dca4e0121922693287b38f14447d072fabd04e089cd6487964e6e5261e32ff9
|
| 3 |
+
size 21175
|
model/tweet_model/saved_model.pb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecab5be566dc4fd13a897026c2e7ab549989858410f1a5fa1a091842a75e77dd
|
| 3 |
+
size 10031550
|
model/tweet_model/variables/variables.data-00000-of-00001
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb76923e9a19466c1ef9aa371b9783c8218f05cdc91340af81ddcae1bae72689
|
| 3 |
+
size 1029458023
|
model/tweet_model/variables/variables.index
ADDED
|
Binary file (14.7 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit == 1.27.1
|
| 2 |
+
Pillow == 9.4.0
|
| 3 |
+
nltk == 3.8.1
|
| 4 |
+
numpy == 1.24.3
|
| 5 |
+
pandas == 2.0.3
|
| 6 |
+
tensorflow == 2.14.0
|
| 7 |
+
regex == 2022.7.9
|