Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
from loadimg import load_img
|
| 3 |
import spaces
|
| 4 |
from transformers import AutoModelForImageSegmentation
|
|
@@ -12,8 +12,8 @@ import os
|
|
| 12 |
import tempfile
|
| 13 |
import uuid
|
| 14 |
import time
|
| 15 |
-
import threading
|
| 16 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
| 17 |
|
| 18 |
torch.set_float32_matmul_precision("medium")
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -26,115 +26,92 @@ birefnet_lite = AutoModelForImageSegmentation.from_pretrained(
|
|
| 26 |
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
|
| 27 |
birefnet_lite.to(device)
|
| 28 |
|
| 29 |
-
transform_image = transforms.Compose(
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
else:
|
| 51 |
-
processed_image = pil_image # Default to original image if no background is selected
|
| 52 |
-
return np.array(processed_image), bg_frame_index
|
| 53 |
-
except Exception as e:
|
| 54 |
-
print(f"Error processing frame: {e}")
|
| 55 |
-
return frame, bg_frame_index
|
| 56 |
|
| 57 |
@spaces.GPU
|
| 58 |
-
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True, max_workers=6):
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
if background_video.duration < video.duration:
|
| 82 |
-
if video_handling == "slow_down":
|
| 83 |
-
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
|
| 84 |
-
else: # video_handling == "loop"
|
| 85 |
-
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
| 86 |
-
background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list
|
| 87 |
-
else:
|
| 88 |
-
background_frames = None
|
| 89 |
-
|
| 90 |
-
bg_frame_index = 0 # Initialize background frame index
|
| 91 |
-
|
| 92 |
-
# Use ThreadPoolExecutor for parallel processing with specified max_workers
|
| 93 |
-
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 94 |
-
futures = [executor.submit(process_frame, frames[i], bg_type, bg_image, fast_mode, bg_frame_index, background_frames, color) for i in range(len(frames))]
|
| 95 |
-
for future in futures:
|
| 96 |
-
result, bg_frame_index = future.result()
|
| 97 |
-
processed_frames.append(result)
|
| 98 |
-
elapsed_time = time.time() - start_time
|
| 99 |
-
yield result, None, f"Processing frame {len(processed_frames)}... Elapsed time: {elapsed_time:.2f} seconds"
|
| 100 |
-
|
| 101 |
-
# Create a new video from the processed frames
|
| 102 |
-
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
| 103 |
-
|
| 104 |
-
# Add the original audio back to the processed video
|
| 105 |
-
processed_video = processed_video.set_audio(audio)
|
| 106 |
-
|
| 107 |
-
# Save the processed video to a temporary file using tempfile
|
| 108 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
| 109 |
-
temp_filepath = temp_file.name
|
| 110 |
-
processed_video.write_videofile(temp_filepath, codec="libx264")
|
| 111 |
-
|
| 112 |
-
elapsed_time = time.time() - start_time
|
| 113 |
-
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 114 |
|
| 115 |
-
|
| 116 |
-
yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
elapsed_time = time.time() - start_time
|
| 121 |
-
yield
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
def process(image, bg, fast_mode=False):
|
| 125 |
image_size = image.size
|
| 126 |
-
input_images = transform_image(image).unsqueeze(0).to(
|
| 127 |
-
|
| 128 |
-
# Select the model based on fast_mode
|
| 129 |
model = birefnet_lite if fast_mode else birefnet
|
| 130 |
-
|
| 131 |
-
# Prediction
|
| 132 |
with torch.no_grad():
|
| 133 |
preds = model(input_images)[-1].sigmoid().cpu()
|
| 134 |
pred = preds[0].squeeze()
|
| 135 |
pred_pil = transforms.ToPILImage()(pred)
|
| 136 |
mask = pred_pil.resize(image_size)
|
| 137 |
-
|
| 138 |
if isinstance(bg, str) and bg.startswith("#"):
|
| 139 |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
| 140 |
background = Image.new("RGBA", image_size, color_rgb + (255,))
|
|
@@ -142,18 +119,20 @@ def process(image, bg, fast_mode=False):
|
|
| 142 |
background = bg.convert("RGBA").resize(image_size)
|
| 143 |
else:
|
| 144 |
background = Image.open(bg).convert("RGBA").resize(image_size)
|
| 145 |
-
|
| 146 |
-
# Composite the image onto the background using the mask
|
| 147 |
image = Image.composite(image, background, mask)
|
| 148 |
return image
|
| 149 |
|
| 150 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 151 |
gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200 frames at once. So, if you have a big video than use small chunks or Duplicate this space.")
|
|
|
|
| 152 |
with gr.Row():
|
| 153 |
in_video = gr.Video(label="Input Video", interactive=True)
|
| 154 |
stream_image = gr.Image(label="Streaming Output", visible=False)
|
| 155 |
out_video = gr.Video(label="Final Output Video")
|
|
|
|
| 156 |
submit_button = gr.Button("Change Background", interactive=True)
|
|
|
|
| 157 |
with gr.Row():
|
| 158 |
fps_slider = gr.Slider(
|
| 159 |
minimum=0,
|
|
@@ -167,12 +146,14 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 167 |
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
|
| 168 |
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
|
| 169 |
bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
|
|
|
|
| 170 |
with gr.Column(visible=False) as video_handling_options:
|
| 171 |
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
|
|
|
|
| 172 |
fast_mode_checkbox = gr.Checkbox(label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True)
|
| 173 |
-
max_workers_slider = gr.Slider( minimum=1, maximum=32, step=1, value=6, label="Max Workers", info="Determines how many
|
| 174 |
-
|
| 175 |
-
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False)
|
| 176 |
|
| 177 |
def update_visibility(bg_type):
|
| 178 |
if bg_type == "Color":
|
|
@@ -184,10 +165,8 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 184 |
else:
|
| 185 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 186 |
|
| 187 |
-
|
| 188 |
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])
|
| 189 |
|
| 190 |
-
|
| 191 |
examples = gr.Examples(
|
| 192 |
[
|
| 193 |
["rickroll-2sec.mp4", "Video", None, "background.mp4"],
|
|
@@ -201,7 +180,6 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 201 |
cache_mode="eager",
|
| 202 |
)
|
| 203 |
|
| 204 |
-
|
| 205 |
submit_button.click(
|
| 206 |
fn,
|
| 207 |
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio, fast_mode_checkbox, max_workers_slider],
|
|
@@ -209,4 +187,4 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
| 209 |
)
|
| 210 |
|
| 211 |
if __name__ == "__main__":
|
| 212 |
-
demo.launch(show_error=True)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
from loadimg import load_img
|
| 3 |
import spaces
|
| 4 |
from transformers import AutoModelForImageSegmentation
|
|
|
|
| 12 |
import tempfile
|
| 13 |
import uuid
|
| 14 |
import time
|
|
|
|
| 15 |
from concurrent.futures import ThreadPoolExecutor
|
| 16 |
+
import asyncio
|
| 17 |
|
| 18 |
torch.set_float32_matmul_precision("medium")
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 26 |
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
|
| 27 |
birefnet_lite.to(device)
|
| 28 |
|
| 29 |
+
transform_image = transforms.Compose([
|
| 30 |
+
transforms.Resize((1024, 1024)),
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 33 |
+
])
|
| 34 |
+
|
| 35 |
+
# Function to process a single frame asynchronously
|
| 36 |
+
async def process_frame_async(frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color):
|
| 37 |
+
pil_image = Image.fromarray(frame)
|
| 38 |
+
if bg_type == "Color":
|
| 39 |
+
processed_image = process(pil_image, color, fast_mode)
|
| 40 |
+
elif bg_type == "Image":
|
| 41 |
+
processed_image = process(pil_image, bg, fast_mode)
|
| 42 |
+
elif bg_type == "Video":
|
| 43 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
| 44 |
+
bg_frame_index += 1
|
| 45 |
+
background_image = Image.fromarray(background_frame)
|
| 46 |
+
processed_image = process(pil_image, background_image, fast_mode)
|
| 47 |
+
else:
|
| 48 |
+
processed_image = pil_image # Default to original image if no background is selected
|
| 49 |
+
return np.array(processed_image), bg_frame_index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
@spaces.GPU
|
| 52 |
+
async def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True, max_workers=6):
|
| 53 |
+
start_time = time.time() # Start the timer
|
| 54 |
+
|
| 55 |
+
video = mp.VideoFileClip(vid)
|
| 56 |
+
if fps == 0:
|
| 57 |
+
fps = video.fps
|
| 58 |
+
|
| 59 |
+
audio = video.audio
|
| 60 |
+
frames = list(video.iter_frames(fps=fps))
|
| 61 |
+
|
| 62 |
+
processed_frames = []
|
| 63 |
+
yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds"
|
| 64 |
+
|
| 65 |
+
if bg_type == "Video":
|
| 66 |
+
background_video = mp.VideoFileClip(bg_video)
|
| 67 |
+
if background_video.duration < video.duration:
|
| 68 |
+
if video_handling == "slow_down":
|
| 69 |
+
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
|
| 70 |
+
else: # video_handling == "loop"
|
| 71 |
+
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
|
| 72 |
+
background_frames = list(background_video.iter_frames(fps=fps))
|
| 73 |
+
else:
|
| 74 |
+
background_frames = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
bg_frame_index = 0
|
|
|
|
| 77 |
|
| 78 |
+
# Use ThreadPoolExecutor for parallel processing with specified max_workers
|
| 79 |
+
loop = asyncio.get_event_loop()
|
| 80 |
+
tasks = [
|
| 81 |
+
loop.run_in_executor(
|
| 82 |
+
None, process_frame_async, frames[i], bg_type, bg_image, fast_mode, bg_frame_index, background_frames, color
|
| 83 |
+
)
|
| 84 |
+
for i in range(len(frames))
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
for future in asyncio.as_completed(tasks):
|
| 88 |
+
result, bg_frame_index = await future
|
| 89 |
+
processed_frames.append(result)
|
| 90 |
elapsed_time = time.time() - start_time
|
| 91 |
+
yield result, None, f"Processing frame {len(processed_frames)}... Elapsed time: {elapsed_time:.2f} seconds"
|
| 92 |
+
|
| 93 |
+
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
| 94 |
+
processed_video = processed_video.set_audio(audio)
|
| 95 |
+
|
| 96 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
| 97 |
+
temp_filepath = temp_file.name
|
| 98 |
+
processed_video.write_videofile(temp_filepath, codec="libx264")
|
| 99 |
+
|
| 100 |
+
elapsed_time = time.time() - start_time
|
| 101 |
+
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 102 |
+
yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"
|
| 103 |
|
| 104 |
def process(image, bg, fast_mode=False):
|
| 105 |
image_size = image.size
|
| 106 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
|
|
|
|
|
|
| 107 |
model = birefnet_lite if fast_mode else birefnet
|
| 108 |
+
|
|
|
|
| 109 |
with torch.no_grad():
|
| 110 |
preds = model(input_images)[-1].sigmoid().cpu()
|
| 111 |
pred = preds[0].squeeze()
|
| 112 |
pred_pil = transforms.ToPILImage()(pred)
|
| 113 |
mask = pred_pil.resize(image_size)
|
| 114 |
+
|
| 115 |
if isinstance(bg, str) and bg.startswith("#"):
|
| 116 |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
|
| 117 |
background = Image.new("RGBA", image_size, color_rgb + (255,))
|
|
|
|
| 119 |
background = bg.convert("RGBA").resize(image_size)
|
| 120 |
else:
|
| 121 |
background = Image.open(bg).convert("RGBA").resize(image_size)
|
| 122 |
+
|
|
|
|
| 123 |
image = Image.composite(image, background, mask)
|
| 124 |
return image
|
| 125 |
|
| 126 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 127 |
gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200 frames at once. So, if you have a big video than use small chunks or Duplicate this space.")
|
| 128 |
+
|
| 129 |
with gr.Row():
|
| 130 |
in_video = gr.Video(label="Input Video", interactive=True)
|
| 131 |
stream_image = gr.Image(label="Streaming Output", visible=False)
|
| 132 |
out_video = gr.Video(label="Final Output Video")
|
| 133 |
+
|
| 134 |
submit_button = gr.Button("Change Background", interactive=True)
|
| 135 |
+
|
| 136 |
with gr.Row():
|
| 137 |
fps_slider = gr.Slider(
|
| 138 |
minimum=0,
|
|
|
|
| 146 |
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
|
| 147 |
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
|
| 148 |
bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
|
| 149 |
+
|
| 150 |
with gr.Column(visible=False) as video_handling_options:
|
| 151 |
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
|
| 152 |
+
|
| 153 |
fast_mode_checkbox = gr.Checkbox(label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True)
|
| 154 |
+
max_workers_slider = gr.Slider( minimum=1, maximum=32, step=1, value=6, label="Max Workers", info="Determines how many frames to process in parallel", interactive=True )
|
| 155 |
+
|
| 156 |
+
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False)
|
| 157 |
|
| 158 |
def update_visibility(bg_type):
|
| 159 |
if bg_type == "Color":
|
|
|
|
| 165 |
else:
|
| 166 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 167 |
|
|
|
|
| 168 |
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])
|
| 169 |
|
|
|
|
| 170 |
examples = gr.Examples(
|
| 171 |
[
|
| 172 |
["rickroll-2sec.mp4", "Video", None, "background.mp4"],
|
|
|
|
| 180 |
cache_mode="eager",
|
| 181 |
)
|
| 182 |
|
|
|
|
| 183 |
submit_button.click(
|
| 184 |
fn,
|
| 185 |
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio, fast_mode_checkbox, max_workers_slider],
|
|
|
|
| 187 |
)
|
| 188 |
|
| 189 |
if __name__ == "__main__":
|
| 190 |
+
demo.launch(show_error=True)
|