mahiatlinux's picture
Update app.py
b3eb7de verified
raw
history blame
4.98 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr # Importing Gradio for creating UI interfaces.
import spaces # Import for using Hugging Face Spaces functionalities.
import torch # PyTorch library for deep learning applications.
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Import necessary components from Hugging Face's Transformers.
# Constants for maximum token lengths and defaults.
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Initial description for the UI interface, showcasing the AI version and creator.
DESCRIPTION = """\
# Masher AI v6.1 7B
This Space demonstrates Masher AI v6.1 7B by Maheswar.
"""
# Check for GPU availability, append a warning to the description if running on CPU.
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"
# If a GPU is available, load the model and tokenizer with specific configurations.
if torch.cuda.is_available():
model_id = "mahiatlinux/MasherAI-7B-v6.1"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# Define a function decorated to use GPU and enable queue for processing the generation tasks.
@spaces.GPU(enable_queue=True)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.1,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
# Preparing conversation history for processing.
conversation = []
# Adding system prompt.
# conversation.append({"from": "human", "value": system_prompt})
# Extending the conversation history with user and assistant interactions.
for user, assistant in chat_history:
conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}])
# Adding the latest message from the user to the conversation.
conversation.append({"from": "human", "value": message})
# Tokenize and prepare the input, handle exceeding token lengths.
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Setup for asynchronous text generation.
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Collect and yield generated outputs as they become available.
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Setup Gradio interface for chat, including additional controls for the generation parameters.
chat_interface = gr.ChatInterface(
fn=generate,
fill_height=True,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
# Examples to assist users in starting conversations with the AI.
],
)
chatbot=gr.Chatbot(height=450, label='Gradio ChatInterface')
# Setup and launch the Gradio demo with Blocks API.
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
# Main entry point to start the web application if this script is run directly.
if __name__ == "__main__":
demo.queue(max_size=20).launch()