# -*- coding: utf-8 -*- import os import gradio as gr import whisper from gtts import gTTS from groq import Groq import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer import faiss index_file_path="faiss_index.index" embeddings_file_path="embeddings.npy" # Load Whisper model for transcription model = whisper.load_model("base") # Set up Groq API client (make sure your API key is correct) client = Groq(api_key="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") # Load the dataset df = pd.read_json("hf://datasets/Amod/mental_health_counseling_conversations/combined_dataset.json", lines=True) corpus = df['Context'].dropna().tolist() # Initialize SentenceTransformer to generate embeddings embedder = SentenceTransformer('paraphrase-MiniLM-L6-v2') # Function to load or build the FAISS index def load_or_build_index(): if os.path.exists(index_file_path) and os.path.exists(embeddings_file_path): print("Loading existing index and embeddings...") index = faiss.read_index(index_file_path) embeddings = np.load(embeddings_file_path) else: print("Building new index...") embeddings = embedder.encode(corpus, convert_to_numpy=True) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) # FAISS index for L2 (Euclidean) distance index.add(embeddings) faiss.write_index(index, index_file_path) # Save the index to disk np.save(embeddings_file_path, embeddings) # Save embeddings to disk return index, embeddings # Load or build the FAISS index index, corpus_embeddings = load_or_build_index() # Function to retrieve the most relevant context from the corpus using FAISS def retrieve_relevant_context(user_input): user_input_embedding = embedder.encode([user_input]) # Convert the user's query into an embedding k = 1 # Retrieve the top 1 most relevant document D, I = index.search(user_input_embedding, k) # Perform the search in the FAISS index return corpus[I[0][0]] # Return the most relevant document # Function to process the audio input, retrieve context, and generate a response def chatbot(audio): # Transcribe the audio input using Whisper transcription = model.transcribe(audio) user_input = transcription["text"] # Retrieve the most relevant context from the dataset using the vector database (FAISS) relevant_context = retrieve_relevant_context(user_input) # Generate a response using the Groq API with Llama 8B, including relevant context chat_completion = client.chat.completions.create( messages=[ {"role": "user", "content": user_input}, {"role": "system", "content": f"Context: {relevant_context}"} ], model="llama3-8b-8192" ) # Extract the generated response text response_text = chat_completion.choices[0].message.content # Convert the response text to speech using gTTS tts = gTTS(text=response_text, lang='en') tts.save("response.mp3") return response_text, "response.mp3" # Create a custom Gradio interface def build_interface(): with gr.Blocks() as demo: gr.Markdown( """

Chill Parents

Chatbot to help parents and other family members to reduce stress between them

Talk to the AI-powered chatbot and get responses in real-time. Start by recording your voice.

""" ) with gr.Row(): with gr.Column(scale=1): audio_input = gr.Audio(type="filepath", label="Record Your Voice") with gr.Column(scale=2): chatbot_output_text = gr.Textbox(label="Chatbot Response") chatbot_output_audio = gr.Audio(label="Audio Response") submit_button = gr.Button("Submit") submit_button.click(chatbot, inputs=audio_input, outputs=[chatbot_output_text, chatbot_output_audio]) return demo # Launch the interface if __name__ == "__main__": interface = build_interface() interface.launch()