Spaces:
Runtime error
Runtime error
| """ | |
| Copyright (c) 2022, salesforce.com, inc. | |
| All rights reserved. | |
| SPDX-License-Identifier: BSD-3-Clause | |
| For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
| """ | |
| import datetime | |
| import logging | |
| import time | |
| from collections import defaultdict, deque | |
| import torch | |
| import torch.distributed as dist | |
| from bubogpt.common import dist_utils | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not dist_utils.is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value, | |
| ) | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError( | |
| "'{}' object has no attribute '{}'".format(type(self).__name__, attr) | |
| ) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append("{}: {}".format(name, str(meter))) | |
| return self.delimiter.join(loss_str) | |
| def global_avg(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append("{}: {:.4f}".format(name, meter.global_avg)) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = "" | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt="{avg:.4f}") | |
| data_time = SmoothedValue(fmt="{avg:.4f}") | |
| space_fmt = ":" + str(len(str(len(iterable)))) + "d" | |
| log_msg = [ | |
| header, | |
| "[{0" + space_fmt + "}/{1}]", | |
| "eta: {eta}", | |
| "{meters}", | |
| "time: {time}", | |
| "data: {data}", | |
| ] | |
| if torch.cuda.is_available(): | |
| log_msg.append("max mem: {memory:.0f}") | |
| log_msg = self.delimiter.join(log_msg) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print( | |
| log_msg.format( | |
| i, | |
| len(iterable), | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB, | |
| ) | |
| ) | |
| else: | |
| print( | |
| log_msg.format( | |
| i, | |
| len(iterable), | |
| eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), | |
| data=str(data_time), | |
| ) | |
| ) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print( | |
| "{} Total time: {} ({:.4f} s / it)".format( | |
| header, total_time_str, total_time / len(iterable) | |
| ) | |
| ) | |
| class AttrDict(dict): | |
| def __init__(self, *args, **kwargs): | |
| super(AttrDict, self).__init__(*args, **kwargs) | |
| self.__dict__ = self | |
| def setup_logger(): | |
| logging.basicConfig( | |
| level=logging.INFO if dist_utils.is_main_process() else logging.WARN, | |
| format="%(asctime)s [%(levelname)s] %(message)s", | |
| handlers=[logging.StreamHandler()], | |
| ) | |