File size: 9,242 Bytes
06a7cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchmetrics
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder

from . import config
from .visualize import plot_incorrect_preds


class Net(pl.LightningModule):
    def __init__(
        self,
        num_classes=10,
        dropout_percentage=0,
        norm="bn",
        num_groups=2,
        criterion=F.cross_entropy,
        learning_rate=0.001,
        weight_decay=0.0,
    ):
        super(Net, self).__init__()
        if norm == "bn":
            self.norm = nn.BatchNorm2d
        elif norm == "gn":
            self.norm = lambda in_dim: nn.GroupNorm(
                num_groups=num_groups, num_channels=in_dim
            )
        elif norm == "ln":
            self.norm = lambda in_dim: nn.GroupNorm(num_groups=1, num_channels=in_dim)

        # Define the loss criterion
        self.criterion = criterion

        # Define the Metrics
        self.accuracy = torchmetrics.Accuracy(
            task="multiclass", num_classes=num_classes
        )
        self.confusion_matrix = torchmetrics.ConfusionMatrix(
            task="multiclass", num_classes=config.NUM_CLASSES
        )

        # Define the Optimizer Hyperparameters
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay

        # Prediction Storage
        self.pred_store = {
            "test_preds": torch.tensor([]),
            "test_labels": torch.tensor([]),
            "test_incorrect": [],
        }
        self.log_store = {
            "train_loss_epoch": [],
            "train_acc_epoch": [],
            "val_loss_epoch": [],
            "val_acc_epoch": [],
            "test_loss_epoch": [],
            "test_acc_epoch": [],
        }

        # This defines the structure of the NN.
        # Prep Layer
        self.prep_layer = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),  # 32x32x3 | 1 -> 32x32x64 | 3
            self.norm(64),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
        )

        self.l1 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, padding=1),  # 32x32x128 | 5
            nn.MaxPool2d(2, 2),  # 16x16x128 | 6
            self.norm(128),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
        )
        self.l1res = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=3, padding=1),  # 16x16x128 | 10
            self.norm(128),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),  # 16x16x128 | 14
            self.norm(128),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
        )
        self.l2 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, padding=1),  # 16x16x256 | 18
            nn.MaxPool2d(2, 2),  # 8x8x256 | 19
            self.norm(256),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
        )
        self.l3 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, padding=1),  # 8x8x512 | 27
            nn.MaxPool2d(2, 2),  # 4x4x512 | 28
            self.norm(512),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
        )
        self.l3res = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, padding=1),  # 4x4x512 | 36
            self.norm(512),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),  # 4x4x512 | 44
            self.norm(512),
            nn.ReLU(),
            nn.Dropout(dropout_percentage),
        )
        self.maxpool = nn.MaxPool2d(4, 4)

        # Classifier
        self.linear = nn.Linear(512, 10)

    def forward(self, x):
        x = self.prep_layer(x)
        x = self.l1(x)
        x = x + self.l1res(x)
        x = self.l2(x)
        x = self.l3(x)
        x = x + self.l3res(x)
        x = self.maxpool(x)
        x = x.view(-1, 512)
        x = self.linear(x)
        return F.log_softmax(x, dim=1)

    def training_step(self, batch, batch_idx):
        data, target = batch

        # print("curr lr: ", self.optimizers().param_groups[0]["lr"])

        # forward pass
        pred = self(data)

        # Calculate loss
        loss = self.criterion(pred, target)

        # Calculate the metrics
        accuracy = self.accuracy(pred, target)

        self.log_dict(
            {"train_loss": loss, "train_acc": accuracy},
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
        )

        return loss

    def validation_step(self, batch, batch_idx):
        data, target = batch

        # forward pass
        pred = self(data)

        # Calculate loss
        loss = self.criterion(pred, target)
        # Calculate the metrics
        accuracy = self.accuracy(pred, target)

        self.log_dict(
            {"val_loss": loss, "val_acc": accuracy},
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
        )

        return loss

    def test_step(self, batch, batch_idx):
        data, target = batch

        # forward pass
        pred = self(data)
        argmax_pred = pred.argmax(dim=1).cpu()

        # Calculate loss
        loss = self.criterion(pred, target)

        # Calculate the metrics
        accuracy = self.accuracy(pred, target)

        self.log_dict(
            {"test_loss": loss, "test_acc": accuracy},
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
        )

        # Update the confusion matrix
        self.confusion_matrix.update(pred, target)

        # Store the predictions, labels and incorrect predictions
        data, target, pred, argmax_pred = (
            data.cpu(),
            target.cpu(),
            pred.cpu(),
            argmax_pred.cpu(),
        )
        self.pred_store["test_preds"] = torch.cat(
            (self.pred_store["test_preds"], argmax_pred), dim=0
        )
        self.pred_store["test_labels"] = torch.cat(
            (self.pred_store["test_labels"], target), dim=0
        )
        for d, t, p, o in zip(data, target, argmax_pred, pred):
            if p.eq(t.view_as(p)).item() == False:
                self.pred_store["test_incorrect"].append(
                    (d.cpu(), t, p, o[p.item()].cpu())
                )

        return loss

    def find_bestLR_LRFinder(self, optimizer):
        lr_finder = LRFinder(self, optimizer, criterion=self.criterion)
        lr_finder.range_test(
            self.trainer.datamodule.train_dataloader(),
            end_lr=config.LRFINDER_END_LR,
            num_iter=config.LRFINDER_NUM_ITERATIONS,
            step_mode=config.LRFINDER_STEP_MODE,
        )
        best_lr = None
        try:
            _, best_lr = lr_finder.plot()  # to inspect the loss-learning rate graph
        except Exception as e:
            pass
        lr_finder.reset()  # to reset the model and optimizer to their initial state

        return best_lr

    def configure_optimizers(self):
        optimizer = self.get_only_optimizer()
        best_lr = self.find_bestLR_LRFinder(optimizer)
        scheduler = OneCycleLR(
            optimizer,
            max_lr=1.47e-03,
            # total_steps=self.trainer.estimated_stepping_batches,
            steps_per_epoch=len(self.trainer.datamodule.train_dataloader()),
            epochs=config.NUM_EPOCHS,
            pct_start=5 / config.NUM_EPOCHS,
            div_factor=config.OCLR_DIV_FACTOR,
            three_phase=config.OCLR_THREE_PHASE,
            final_div_factor=config.OCLR_FINAL_DIV_FACTOR,
            anneal_strategy=config.OCLR_ANNEAL_STRATEGY,
        )
        return [optimizer], [
            {"scheduler": scheduler, "interval": "step", "frequency": 1}
        ]

    def get_only_optimizer(self):
        optimizer = optim.Adam(
            self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay
        )
        return optimizer

    def on_test_end(self) -> None:
        super().on_test_end()

        ## Confusion Matrix
        confmat = self.confusion_matrix.cpu().compute().numpy()
        if config.NORM_CONF_MAT:
            df_confmat = pd.DataFrame(
                confmat / np.sum(confmat, axis=1)[:, None],
                index=[i for i in config.CLASSES],
                columns=[i for i in config.CLASSES],
            )
        else:
            df_confmat = pd.DataFrame(
                confmat,
                index=[i for i in config.CLASSES],
                columns=[i for i in config.CLASSES],
            )
        plt.figure(figsize=(7, 5))
        sns.heatmap(df_confmat, annot=True, cmap="Blues", fmt=".3f", linewidths=0.5)
        plt.tight_layout()
        plt.ylabel("True label")
        plt.xlabel("Predicted label")
        plt.show()

    def plot_incorrect_predictions_helper(self, num_imgs=10):
        return plot_incorrect_preds(
            self.pred_store["test_incorrect"], config.CLASSES, num_imgs
        )